• Title/Summary/Keyword: PSC거더 교량

Search Result 134, Processing Time 0.02 seconds

Development of Long-Span Railway Bridges Design Using IPC Girder (IPC 거더를 이용한 장지간 철도교 설계에 관한 연구)

  • Jang, Won-Seok;Park, Jun-Myung;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.149-158
    • /
    • 2003
  • It is customary that tendons and sectional dimensions are calibrated and tendon forces are applied at once at the initial stage to keep the subsequent stresses occuring at different loading stages within the allowable stresse in prestressed concrete (PSC) bridge design. However, this traditional tensioning method usually results in a too conservative sectional depth in view of ultimate capacity of a girder. A new design method which can realize the reduction of sectional depth of PSC girder is theoretically suggested in this study. Tendons are tensioned twice at different loading stages: the initial stage and the stage after fresh slab concrete is cast. It can be shown that according to this technique, sectional depth can be significantly reduced and larger span can be realized compared to traditional ones. In this paper, there is an example about the design of bridge by means of new PSC design theory, having a longer span than a existing railway bridge. Also, a new method by continuous tendon profiles is presented to be continuous a IPC bridge.

Implementation of 3D Object Model considering Recycle-Design of PSC Box Girder (PSC 박스 거더의 Recycle-Design을 고려한 3차원 객체 모델 구현)

  • Cho, Sung-Hoon;Park, Jae-Guen;Lee, Heon-Min;Shin, Hyun-Mock
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.3
    • /
    • pp.325-330
    • /
    • 2010
  • In the fields of design within civil engineering, BIM based Utilization of 3D object model is still far from commercialization. In this paper, BIM based 3D object model is composed for PSC box girder, super structure of railway bridge. The basic unit of the model is part model. The part model is the minimum unit model. And it has hierarchy to reflect the characteristics of structures. Change orders of structural designer must be reflected quickly in the 3D object model. Repetitive change orders are occurred in actual construction process. To prepare that, we classified design variables to parameters. Change orders of structural designer can be reflected quickly in the 3D object model because those parameters are related with information of 3D object model. In this paper, we studied various benefits of BIM based design method with 3D object model in the fields of design within civil engineering, and proposed the efficient application method of 3D object model for PSC box girder.

Accelerated Construction Method of Long-span PSC Girder Bridge for the Recovery of Flood Damaged Road (수해도로 복구를 위한 장경간 프리캐스트 바닥판 PSC거더교 교량 급속 시공)

  • Oh, Hyun Chui;Ma, Hyang Wook;Kim, In Gyu;Kim, Young Jin
    • Journal of Korean Society of societal Security
    • /
    • v.1 no.4
    • /
    • pp.51-56
    • /
    • 2008
  • Because of our country's climate that has the 50% of the annual precipitation in summer, annually a lot of bridges on the roads are broken in this season. So, we need an accelerated bridge construction method that complete to repair the roads. This paper introduces the Hangae 2 bridge, prefabricated bridge using full depth precast deck panels and new types of PSC girders. The Hangae 2 bridge located in lnje-gun, kangwon-do. This is a good example of the accelerated bridge construction method for recovery of flood damaged road. The PSC girder bridge system introduced in this paper is a rapid construction method for bridge that can reduce the term of works over 50%.

  • PDF

A Study on Static Behavior of 60 m span Half-Decked PSC Girder (Half-Deck을 포함한 60 m 경간 PS 콘크리트거더의 정적 거동 연구)

  • Kim, Tae Min;Park, Jong Heon;Kim, Moon Kyum;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2A
    • /
    • pp.65-73
    • /
    • 2012
  • In this study, we tested structural performance of Half-Decked PSC girder which was developed for applying to long span bridge. We operated 4 point bending test with 60 m span full scale girder designed as simple bridge with hinge-roller boundary condition. Actuators were set on the both sides of girder, 5.5 m away from the center, and 4 stages of cyclic loading was applied at rate of 1 kN/sec. Through stages 1 to 4, loading and unloading 1,000 kN, 1,200 kN, 1,500 kN, and 2,000 kN were repeated and displacement, strain of concrete and steel, crack of girder were checked. From these results, the strength of girder was assessed and resilience and ductility were observed after removing the load. Since initial flexural crack occurred in the vicinity of 1,400 kN, non-linearity of load-displacement curve appeared and definite residual strain was measured at that point. The test result showed that initial cracking load was over twice the DB-24 load which means the developed girder had sufficient strength. To verify the experimental results, we numerically analyze the test and confirmed that the data were similar with results from the test above. Half-Decked PSC type of 60 m-girder developed in this study showed its adequate structural capacity through static loading test, which proved that possibility of applying the girder to actual bridges practically.

Three Dimensional Model for Dynamic Moving Load Analysis of a PSC-I Girder Railway Bridge (PSC-I 거더 철도교량의 3차원 동적 이동하중 해석 모델)

  • Cho, Jeong-Rae;Kim, Dong-Seok;Kim, Young Jin;Kwark, Jong-Won;Jang, Seung Yup
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.4
    • /
    • pp.286-297
    • /
    • 2013
  • In this paper we evaluated dynamic stability, considering the effects of modeling and analysis methods on moving load analysis, for which a sophisticated 3 dimensional model of a PSC-I type girder bridge was used. For this purpose, we suggested a reasonable modeling method and the physical properties of the concrete and ballasted track system involved. We also analyzed the response characteristics according to: 1) the type of track system; 2) whether or not the track was modeled; 3) whether or not the distance between the girder center and the bearing were considered; 4) the analysis method (i.e., direct integral and modal analysis); 5) whether or not the frequency was filtered.

Experimental Tests for the Evaluation of One-dimensional and Two-dimensional Acoustic Source Locations with 50m length of a PSC Box Girder (50m PSC박스거더를 이용한 1차원과 2차원 음원위치 산정 실험)

  • Youn, Seok-Goo;Lee, Changno
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.433-442
    • /
    • 2013
  • This paper presents experimental research work for the evaluation of one-dimensional and two-dimensional acoustic source locations with 50m length of a precast prestressed concrete box girder. Acoustic events are generated by the impacts of Schmidt Hammer and the impact signals are detected by acoustic emission sensors mounted on the concrete web surface of PSC box girder with the average spacing of 9.34m. Based on the amplitude of detected acoustic signals, considering the noises developed in PSC box girder bridges, the arrival times of acoustic signals are estimated by the first arrival times of 0Volt, 0.5Volt, and 1.0Volt amplitude in each signal. Using Least Square Method, the velocities and the source locations of acoustic signals are evaluated. Based on the test results, the spacing of AE sensors and the AE sensor networks are discussed to reduce the source location errors.

Study on Affecting Factors for the Segmental Joint Behavior of Spliced Girder Bridges (분절교량 접합부 거동의 영향인자에 대한 연구)

  • Nam, Jin-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.9-16
    • /
    • 2019
  • Recently, precast PSC girder bridges have been widely applied for short and middle span bridges. The construction of the spliced girder bridges has been increasing to overcome the length limit of girder and transportation restrictions. In case of the spliced girder, the integrity of the segmental joints is very important to secure the structural soundness of bridge because the discontinuity on the segmental joints between adjacent segments could be vulnerable point. The study of segmental joint behavior with different influence factors of joint type, shear key installation, confining force is very important. In this research, finite element analysis and scaled model test with different shear key shapes and confining forces were carried out and the comparative study was performed to evaluate the segmental joint behavior of precast spliced PSC girder bridge. It was confirmed that the installation of shear key with height and depth ratio of 1/2~1/3 and applying of confining force of 1/2 of the concrete strength at the joint was effective in improving the integrity of segmental joint. In addition, the field loading test for existed precast spliced PSC girder bridge was performed and the measurement of the difference of deflection between adjacent segments at segmental joint was proposed as the assessment solution of the integrity of segmental joint.

Flexural Behaviors of PSC Composite Girders in Negative Moment Regions (콘크리트 충전 강관을 갖는 프리스트레스트 합성거더의 부모멘트 구간 거동)

  • Kang, Byeong-Su;Ju, Young-Tae;Lee, Yong-Hak
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.169-176
    • /
    • 2006
  • Prestressed composite girder with concrete infilled steel tubes(PSC-CFT girder) is new type of bridge girder which enhances the resisting capacities due to the double composite action of PSC composite girder and concrete infilled tube. The flexural behaviors of PSC-CFT girder in the negative moment regions are investigated based on the experimental observations recently performed on two of 3.6m long specimens. The mechanical and structural roles and failure mechanism of the composite action are discussed through comparing the test results with those numerically predicted by the three methods of one and three-dimensional nonlinear finite element analysis, and section analysis method.

Flexural Behaviors of PSC Composite Girders in Positive Moment Regions (콘크리트 충전 강관을 갖는 프리스트레스트 합성거더의 정모멘트 구간 거동)

  • Kang, Byeong-Su;Sung, Won-Jin;Chang, Young-Kil;Lee, Yong-Hak
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.313-320
    • /
    • 2006
  • Prestressed composite girder with concrete infilled steel tubes(PSC-CFT girder) is new type of bridge girder which enhances the resisting capacities due to the double composite action of PSC composite girder and concrete infilled tube. The flexural behaviors of PSC-CFT girder in the positive moment regions are investigated based on the experimental observations recently performed on two of 4.4m long specimens. The mechanical and structural roles and failure mechanism of the composite action are discussed through comparing the test results with those numerically predicted by the three methods of one- and three-dimensional nonlinear finite element analyses, and section analysis method.