DOI QR코드

DOI QR Code

Experimental Tests for the Evaluation of One-dimensional and Two-dimensional Acoustic Source Locations with 50m length of a PSC Box Girder

50m PSC박스거더를 이용한 1차원과 2차원 음원위치 산정 실험

  • Youn, Seok-Goo (Department of Civil Engineering, Seoul National University of Science & Technology) ;
  • Lee, Changno (Department of Civil Engineering, Seoul National University of Science & Technology)
  • 윤석구 (서울과학기술대학교 건설시스템디자인공학과) ;
  • 이창노 (서울과학기술대학교 건설시스템디자인공학과)
  • Received : 2012.10.27
  • Accepted : 2013.03.07
  • Published : 2013.03.30

Abstract

This paper presents experimental research work for the evaluation of one-dimensional and two-dimensional acoustic source locations with 50m length of a precast prestressed concrete box girder. Acoustic events are generated by the impacts of Schmidt Hammer and the impact signals are detected by acoustic emission sensors mounted on the concrete web surface of PSC box girder with the average spacing of 9.34m. Based on the amplitude of detected acoustic signals, considering the noises developed in PSC box girder bridges, the arrival times of acoustic signals are estimated by the first arrival times of 0Volt, 0.5Volt, and 1.0Volt amplitude in each signal. Using Least Square Method, the velocities and the source locations of acoustic signals are evaluated. Based on the test results, the spacing of AE sensors and the AE sensor networks are discussed to reduce the source location errors.

이 논문에는 길이가 50m인 프리스트레스트 콘크리트 박스거더를 이용한 1차원, 2차원 음원위치 산정을 위한 실험연구 내용을 수록하였다. 슈미트 햄머를 이용하여 콘크리트 표면에 타격하여 충격음파를 발생시켰으며 PSC박스거더 복부판에 평균 9.34m 간격으로 부착한 AE센서를 통해 충격 음파를 감지하였다. 공용중인 PSC박스거더 교량에 발생할 수 있는 잡음을 고려하여 음파의 도달시간을 음파의 세기가 0Volt, 0.5Volt, 그리고 1.0Volt일 때를 기준으로 산정하였다. 음파의 도달시간들에 대한 측정결과를 토대로 충격음파의 음원위치를 최소제곱법을 이용해 산정하였다. 실험결과를 토대로 2차원 음원위치 산정시 오차를 최소화하기 위해 필요한 음향센서 간격과 음향센서의 네트워크에 대해 고찰하였다.

Keywords

References

  1. Baron, J. A., and Ying, S. (1987). "Acoustic Emission Source Location," Nondestructive Testing Handbook, Vol. 5, Acoustic Emission Testing, Section 6, ASNT, Columbus, O.H., pp. 135-154.
  2. Cullington, D. W., MacNeil, D., Paulson, P., and Elliot, J. (2001). "Continuous acoustic monitoring of grouted post-tensioned concrete bridges," NDT&E International, Vol. 34, pp. 95-105. https://doi.org/10.1016/S0963-8695(00)00034-7
  3. Fotopoulos, G. (2003). An analysis on the optimal combination of geoid, orthometric and ellipsoidal height data, Ph.D. Dissertation, Univ. of Calgary, Canada.
  4. Fricker, S., and Vogel, T. (2006). "Site Installation and Testing of a Continuous Acoustic Monitoring," Construction and Building Materials, 21, pp. 501-510.
  5. Harding, J., Parke, G., Ryall, M., and Mattews, J. (1996). "Special inspection of post-tensioned concrete bridges on the M4 motorway in Berkshire," Bridge Management 3, E&FN Spon, London, UK, pp. 684-695.
  6. Halsall, A. P., Welch, W. E., and Trepanier, S. M. (1996). "Acoustic Monitoring Technology for Post-tensioned Concrete Structures," FIP Symposium 1996 on Post-tensioned Concrete Structures, The Concrete Society, pp. 483-491.
  7. Landis, E., Ouyang, C., and Shah, S. P. (1992). "Automated Determination of First P-Wave Arrival and Acoustic Emission Source Location," Journal of Acoustic Emission, Vol. 10, pp. 97-103.
  8. Mathy, B., Demars, P., Roisin, F., and Wouters, M. (1996), "Investigation and Strengthening Study of Twenty Damaged Bridges: A Belgium Case History," Bridge Management 3, E&FN Spon, London, UK, pp. 658-666.
  9. The Concrete Society, (1996). Durable Bonded Post-tensioned Concrete Bridges, Concrete Society Technical Report 47, TR047, England.
  10. Venkatesh, V., and Houghton, J. R. (1996). "Neural Network Approach to Acoustic Emission Source Location," Journal of Acoustic Emission, Vol. 14, No. 2, pp. 61-68.
  11. Woodward, R. J., and Williams, F. W. (1988). "Collapse of Ynys-s-Gwas bridge, West Glamorgan," Proceedings of Institute of Civil Engineers, Part 1, Vol. 84, pp. 635-669. https://doi.org/10.1680/iicep.1988.179
  12. Youn, S. G., Cho, S. K., and Kim, E. K. (2005). "Acoustic Emission Technique for Detection of Corrosion-induced Wire Fracture", Key Engineering Materials, Vols. 297-300, pp. 2040-2045. https://doi.org/10.4028/www.scientific.net/KEM.297-300.2040
  13. Youn, S. G., Kim, E. K., Choi, M., and Kim, H. (2005). "Analysis of Acoustic Signals of Tendon Fractures," Proceedings of the Korea Concrete Institute, KCI, Vol. 17, No. 2, pp. 243-246 (in Korean).
  14. Youn, S. G., Lee, C., and Kim, E. K. (2006). "Estimation of Velocities of Acoustic Signals and Source Locations in PSC Beam by Acoustic Emission," Journal of the Korean Society of Civil Engineers, KSCE, Vol. 26, No. 5A, pp. 917-925 (in Korean).
  15. Youn, S. G., and Lee, C. (2010). "Detection of Fracture Signals of Low Prestressed Steel Wires in a 10m PSC Beam by Continuous Acoustic Monitoring Techniques," Journal of the Korea Concrete Institute, KCI, Vol. 22, No. 1, pp. 113-122 (in Korean). https://doi.org/10.4334/JKCI.2010.22.1.113