• 제목/요약/키워드: PROPULSION SPEED

검색결과 799건 처리시간 0.038초

500Ps급 상용차량 디젤엔진을 이용한 선박용 디젤엔진 개발 연구 (A Study for Development of a Marine Diesel Engine from a 500Ps Commercial Vehicle Diesel Engine)

  • 심한섭
    • 한국기계가공학회지
    • /
    • 제12권6호
    • /
    • pp.125-131
    • /
    • 2013
  • This study was carried out to develop a diesel engine for marine propulsion. This marine diesel engine was developed based on a 500Ps vehicle diesel engine. Many main parts, such as the intercooler, radiator, and engine controller were designed for the marine diesel engine. The intercooler was designed to be of sea water cooling type; inlet air is cooled by sea water. Engine coolant is cooled by sea water in the radiator too. The water cooling heat exchanger has high cooling performance. In the cooling system, consists of the intercooler and the radiator, the sea water passes through the intercooler and then the radiator, in sequence. This process is very effective compared to the reverse method in which sea water passes through the radiator and then the intercooler, in sequence. The control performance of the engine controller and the fuel injection rate were improved using an engine speed controller. This system was tested on an engine dynamometer and an exhaust gas analyzer using the marine diesel engine test method. Test results show that the 500Ps marine diesel engine satisfied the IMO NOx regulations; Tier II.

프로펠러 압력면 캐비테이션의 초기발생 추정 및 실험 검증 (Prediction of the Propeller Face Cavity Inception and Experimental Verification)

  • 안병권;이창섭;유용완;문일성
    • 대한조선학회논문집
    • /
    • 제44권5호
    • /
    • pp.467-473
    • /
    • 2007
  • Cavitation phenomena appearing on ship propellers have long been interested and recent theoretical analysises give good results comparing with model tests. In accordance with a continuous rise in heavy powered and high speed ships, hull forms have been changed and loads acting on the propeller surface have also been increased, and they result in various and particular cavitations. In some cases, cavitation appears not only on the back but also on the face of the propeller and it causes additive pressure fluctuations and erosion of the propeller and reduces propulsion efficiency of the ship. In this study, we predict the face cavity inception using unsteady propeller analysis based on the panel method and compare the results with experimental observations.

저전압용 외전형 BLDC 전동기의 소비전류 최소화에 대한 연구 (A Study on the Current Minimization of a Outer-Rotor Type BLDC Motor for Low Voltage Application)

  • 김한들;정교범;신판석
    • 한국군사과학기술학회지
    • /
    • 제21권2호
    • /
    • pp.211-216
    • /
    • 2018
  • This paper presents a numerical optimization technique and switching phase control technique aiming at improvement of efficiency of the low voltage BLDC motor. The optimization technique is performed using the generalized sensitivity technique, response surface method(RSM) and sampling minimization technique. In order to minimize current consumption of the BLDC motor, the switching method of the driving device is optimized using RSM with finite element analysis. The ratings of BLDC motor are 50 W, 24 V, 1200 rpm. As optimizing results, the input current is reduced from 2.78 to 2.51 [A] when the switching phase is shifted by -2.65 [DEG_ELC] at the rated driving speed of 1200 [rpm]. It is confirmed that the proposed method reduces the consuming current of the low voltage BLDC motor through switching phase control method using the numerical optimization method.

독립 3상 구조를 갖는 이중공극형 영구자석 동기전동기의 Y 및 Delta 결선에 따른 공극제어 (Air-gap Control According to Y and Delta Connections of Double-sided Air-gap Permanent Magnet Synchronous Motor with Independent Three-phase Structure)

  • 허찬녕;황선환
    • 전력전자학회논문지
    • /
    • 제22권3호
    • /
    • pp.249-255
    • /
    • 2017
  • This paper presents air-gap control according to Y and Delta connections of a double-sided air-gap permanent magnet synchronous motor (DA-PMSM) with independent three-phase structure. In particular, the DA-PMSM used in this study can be applied to low-speed and high-torque applications, such as wind turbines, tidal power generations, and electric propulsion ships, because of its modular stators and a rotor with numerous permanent magnets. Unlike conventional three-phase machines, the DA-PMSM has a symmetrical configuration with double-sided air-gap. Therefore, Y/Delta winding connections and serial/parallel configurations between stator modules are possible. To identify the DA-PMSM operating characteristics, mathematical modeling is analyzed according to the Y/Delta connections. Moreover, air-gap control performances by applying the winding connection methods are verified through experimental results.

선외기 추진장치의 저항특성 및 항주자세에 대한 실험 연구 (An Experimental Study on Hull Resistance Characteristics and Attitude by an Outboard Propulsion System)

  • 박주식;원준희;장동원
    • 대한안전경영과학회지
    • /
    • 제19권4호
    • /
    • pp.301-307
    • /
    • 2017
  • The planing hull is characterized by a large change in the posture according to the speed, and the shape of the propeller varies, so that the hull resistance varies greatly depending on the propeller used. Especially, the Savitsky system, which is widely used for estimating the resistance of planing hull, does not consider the characteristics of these propeller and ship bottom spray rails. In this paper, in order to investigate the difference in resistance characteristics between the propeller and the bottom of the propeller of 6m and 12m class propeller using propeller such as outboard or stern drive, A comparative test was conducted on resistance and attitude posture changes in the Circulating Water Channel of Institute of Medium & Small Shipbuilding. As a result of comparison test, it was confirmed that there is a clear difference in the attitude change due to the presence of the bottom floor spray rail and the change in resistance characteristics due to the installation of the propeller. However, attitude change with the propeller was found to be insignificant.

전기철도용 대용량 PWM 컨버터 기술개발에 관한 연구 (A Study on Technology Development of High Capacity PWM Converter for Electric Vehicle)

  • 한영재;조정민;배창한;이영호
    • 전기학회논문지
    • /
    • 제67권12호
    • /
    • pp.1729-1734
    • /
    • 2018
  • Recently, interest in environmentally friendly transportation systems has been increasing, and study on railway systems has been aggressively conducted. Therefore, lots of studies have been done in railway advanced countries to improve performance of PWM converter. The research on the PWM converter for railway vehicle was mainly carried out on the converter mounted on railway vehicle such as the high-speed railway and metropolitan railway. In also, a lot of study has been carried out to improve converter performance installed in the ground. The high-capacity transform used in this paper converted from AC 22.9kV to AC 590V. The converter changed from AC 590V to DC 950V. In general, in the case of rectifier, the DC power supply system has a negative impact on inverter control characteristics because it can not avoid the pulsating component. In this study, it was performed current control for high-capacity converter using Matlab Simulink. The PWM converter is normally performed through the voltage and current at starting mode, powering mode, and braking mode. In the light-load test and the on-line test, we have studied for the PWM converter characteristics. Using this research, we have founded that the converter has excellent performance.

S자형 환형덕트가 원심압축기 성능에 미치는 영향에 관한 연구 (A Study on the Influence of S Shaped Annular Duct on the Centrifugal Compressor Performance)

  • 정주현;전승배;김승우
    • 한국추진공학회지
    • /
    • 제2권2호
    • /
    • pp.64-73
    • /
    • 1998
  • 항공기용 엔진에는 압축기단들 사이에 스트럿을 포함하는 S자형 환형덕트가 존재하기도 한다. 이러한 엔진에서 S자형 덕트를 통과하는 유동은 볼록면과 오목면을 따라 가면서 가속과 감속이 이루어지고, 벽면에서의 경계층 성장으로 인해 유로폐쇄량이 증가한다. 이처럼 S자형 덕트의 영향으로 후방에 존재하는 압축기는 불균일한 축방향 속도분포에 따른 영향을 받게 된다. 따라서, 후방 압축기는 전방에 위치한 S자형 덕트의 영향을 충분히 고려하여 설계하여야 한다. S자형 덕트가 미치는 영향을 고려하여 설계된 원심압축기의 성능을 검증하고, S자형 덕트가 원심압축기 성능에 미치는 영향을 파악해보기 위해 압축기 입구에 S자형 환형덕트를 장착한 경우와 원통형 덕트를 장착한 경우에 대해 각각 성능시험을 수행하였다. 시험결과를 통해 입구에 S자형 덕트가 있는 경우에는 없는 경우보다 압축비 및 효율 등 압축기 성능이 저하되고, 쵸킹유량이 감소함을 알 수 있었다. 이러한 성능저하의 원인을 분석하기 위해 S자형 덕트를 포함하는 임펠러의 유동해석을 수행하였으며, 그 결과 성능저하의 원인은, S자형 덕트와 임펠러의 상호작용으로 설계시 예측했던 것보다 인듀서팁에서 상대마하수가 증가하였고, 영각이 감소하였기 때문임을 확인할 수 있었다.

  • PDF

단기통 디젤엔진에서 함정용 디젤유의 전·후 분사시기가 연소 및 배출가스 특성에 미치는 영향 (Effect of pre-post injection timing of diesel fuel for naval vessel on the combustion and emission characteristics in an optically-accessible single cylinder diesel engine)

  • 이형민
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권7호
    • /
    • pp.868-876
    • /
    • 2014
  • 본 논문에서는 함정에 탑재된 추진용 엔진에 사용되는 디젤연료(MDO)의 분사상태를 가시화가 가능한 단기통 디젤엔진에 적용시켜 전 후 분사시기에 따른 연소특성, 일산화탄소(CO) 및 탄화수소(HC) 배출특성을 규명하고, 연소과정의 가시화를 통하여 연소특성을 분석하는데 초점을 두었다. 전 분사시기가 주 분사시기 쪽으로 지연될수록 실린더 내부 평균유효압력($P_{me}$) 및 최고압력($P_m$)은 상승했으나, 주 분사의 방열율은 저감되고, 일산화탄소 및 탄화수소의 발생량 또한 감소하였다. 후 분사시기가 빨라질 경우 주 분사에 의해 형성된 고온, 고압 하에서 연소가 이루어짐에 따라 실린더 내부 평균유효압력 및 최고압력은 증가하였고, 일산화탄소 및 탄화수소 배출수준 또한 증가하였다. 연소과정을 분석한 결과, 전 분사시기가 늦어질수록 주 분사 시 발생되는 착화지연은 매우 짧아지며, 화염강도는 매우 상승하였다. 분사시기에 관계없이 후 분사 시 착화지연 현상은 발생하지 않았으며, 후 분사시기가 늦어질수록 화염의 강도는 점점 떨어졌다.

원자력 추진 잠수함의 특성과 농축우라늄 사용 (The characteristics of nuclear powered submarine and the use of enriched uranium)

  • 장준섭
    • Strategy21
    • /
    • 통권41호
    • /
    • pp.261-293
    • /
    • 2017
  • Nuclear power is a way of attaining an enormous amount of energy with relatively small amount of resources and after it has been introduced to the submarine since 1954, there are approximately 150 of nuclear powered submarine currently on a mission around the world. This is due to the maneuverability, mountability and covertness of nuclear submarines. However, there are other tasks, not only the high level of nuclear technology that are needed to be dealt with in order to construct nuclear powered submarine. The biggest task of all is to secure the enriched uranium. Accordingly, this research is about the way of enriching and securing the nuclear fuel that are used in the nuclear submarine with the characteristics, merits and demerits of the nuclear submarine. Due to the fact that the pressurized water reactor in South Korea is the reactor that was originally built for the development of nuclear powered submarine, many parts is designed to be suitable for the submarine propulsion. However, in order to apply this to submarine it is needed to consider additional requests such as the position of reactor, accident-coping system, radioactive covering, reactor output adjustment and ship's pitch and roll in order to apply this to submarine. Nuclear submarines have much higher speed based on the powerful propulsion in comparison with diesel-electric submarine and also have bigger loading area. Besides, there is no need to snorkel and they also have advantages in covertness with the multi-noise proof system. The nuclear technology in South Korea has seen the dramatic development since 1962 and in 1998 reached to the level that we have succeeded in the localization of nuclear plant and exported the world-class one-piece small-sized reactor (SMART) to UAE. To operate these reactors, we import the whole quantity of low-enriched uranium and having our own uranium enrich facility is not probable because of the budget and international regulations. With the ROK/US nuclear agreement revised on 2015 November, the enrichment of uranium that are available without special permission has changed up to 20%. According to the assumption that we use the 20% enrichment of Uranium on U.S. virginia class submarine, it is necessary to change the fuel after 11 years and it will cause additional cost of 1 billion dollars. But the replace period by the uranium's enrichment rate is not fixed so that it is possible to change according to the design of reactor. Therefore, I would like to make a suggestion on two types of design concepts of nuclear submarine that can be operated for 30 years without nuclear fuel change by using the 20% enriched uranium from ONNp.First of all, it is possible by increasing the size of reactor by 3 times and it results in the 1,000t increase of the weight. And secondly, it is by designing the one piece reactor to insert devices such as steam turbine, condenser into the inside of nuclear core like the Rubis class submarines of France.

중형항공기용 터보팬 엔진의 성능최적화를 위한 LQR 제어기 설계 (II) (A LQR Controller Design for Performance Optimization of Medium Scale Commercial Aircraft Turbofan Engine (II))

  • 공창덕;기자영
    • 한국추진공학회지
    • /
    • 제2권3호
    • /
    • pp.99-106
    • /
    • 1998
  • 현재 국내에서 개발되어왔던 중형항공기 후보엔진인 터보팬 엔진의 성능해석과 성능최적화를 위한 제어기법을 연구하였다. 선행된 연구에서 동적모사 및 실시간 선형모사를 수행한 결과 지상 정지조건 하에서 70% 엔진로터 회전수에서 100% 엔진로터 회전수로 급상승하는 경우 고압터어빈 입구온도에서 오버슈트가 발생하여 제한온도인 3105 $^{\cire}R$ 을 넘어감을 확인할 수 있었다 또한 압축기의 서지여유도 협소하여 엔진에 손상을 가져올 수 있다. 이에 본 연구에서는 보다 빠른 가속성능과 함께 엔진 성능의 최적화를 위해 LQR 제어기를 설계하였다. 제어기의 설계를 위해서는 선형모델을 구성해야하며 엔진의 비선형 거동에 보다 근접한 선형화를 위해서는 실시간 선형모사가 요구된다. 선형모델에 필요한 행렬은 자동점에 %의 섭동을 주어 5% 간격으로 구하였으며, 최소자승법을 이용하여 저압 엔진로터 회전수의 함수로 보간하는 방법으로 실시간 선형모사를 수행하였다. 제어변수는 연료유량의 증가속도와 압축기 블리드 공기유량으로 하였으며, 제어 결과 고압 터빈입구온도의 오버슈트를 제거하였으며 최대 압축기 서지여유도 0.55 이하로 확보였다. 비연료소모율도 0.353에서 0.43으로 안정됨을 확인할 수 있었다.

  • PDF