• Title/Summary/Keyword: PQRSM

Search Result 23, Processing Time 0.028 seconds

Heat Exchanger Optimization using Progressive Quadratic Response Surface Method (순차적 2 차 반응표면법을 이용한 열교환기 최적설계)

  • Park, Kyoung-Woo;Choi, Dong-Hoon;Lee, Kwan-Soo;Kim, Yang-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1022-1027
    • /
    • 2004
  • In this study, the shape of plate-fin type heat sink is numerically optimized to acquire the minimum pressure drop under the required temperature rise. To do this, a new sequential approximate optimization (SAO) is proposed and it is integrated with the computational fluid dynamics (CFD). In thermal/fluid systems for constrained nonlinear optimization problems, three fundamental difficulties such as high cost for function evaluations (i.e., pressure drop and thermal resistance), the absence of design sensitivity information, and the occurrence of numerical noise are confronted. To overcome these problems, the progressive quadratic response surface method (PQRSM), which is one of the sequential approximate optimization algorithms, is proposed and the heat sink is optimize by means of the PQRSM.

  • PDF

Design Optimization for Minimizing Warpage in Injection Molding Parts with Numerical Noise (수치적 노이즈가 존재하는 사출 성형품 휨의 최적설계)

  • Park, Changhyun;Kim, Sungryong;Choi, Donghun;Pyo, Byunggi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1445-1454
    • /
    • 2005
  • In order to minimize warping deformation which is an essential factor in the failure of injection molding parts, this study proposes an optimization design method fer determining design variables of injection molding parts. First, using a commercial package program for injection molding analysis, namely, Computer Aided Plastics Application(CAPA), we investigate the effects of parameters of injection molding process. Next, an optimum design process is established by interfacing CAPA to PQRSM embedded in EMD10S, a design framework developed by the conte. of innovative Design Optimization Technology(iDOT). PQRSM is a very efficient sequential approximate optimization algorithm. Optimum design results demonstrate the effectiveness of the design method suggested in this study by showing that the results of the optimum design is better than those of the initial design. It is believed that the proposed methodology can be applied to other injection molding design applications.

Multi-Object Optimization of the Switched Reluctance Motor

  • Choi, Jae-Hak;Kim, Sol;Kim, Yong-Su;Lee, Sang-Don;Lee, Ju
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.4
    • /
    • pp.184-189
    • /
    • 2004
  • In this paper, multi-object optimization based on a progressive quadratic response surface method (PQRSM) and a time stepping finite element method (FEM) is proposed. The new PQRSM and FEM are able to decide optimal geometric and electric variables of the switched reluctance motor (SRM) with two objective functions: torque ripple minimization and average torque maximization. The result of the optimum design for SRM demonstrates improved performance of the motor and enhanced relationship between torque ripple and average torque.

The Optimal Design of Switched Reluctance Motor Using Progressive Quadratic Response Surface Method (점진적 2차 반응 표면 모델링 방법(PQRSM)을 이용한 SRM의 최적 설계)

  • Choi, Jae-Hak;Jung, Sung-In;Park, Jae-Bum;Lee, Ju;Hong, Kyung-Jin;Choi, Dong-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.595-597
    • /
    • 2002
  • This paper presents an optimum design, which is able to determine optimal geometric and electric parameters of Switched Reluctance Motor so as to fit respective operating conditions specified in various industrial fields. Those works describe an approach to maximize the average torque while keeping the torque ripple within 10${\sim}$100(%) of respective limited values. This optimum design is obtained by uniting an optimization algorithm of PQRSM to a time stepping finite element method.

  • PDF

Optimum Geometric and Electrical Parameter for Minimization Torque Ripple of Switched Reluctance Motor (스위치드 릴럭턴스 전동기의 토오크 리플 저감을 위한 기하학적인 파라미터와 전기적인 파라미터의 최적화)

  • Choi, Jae-Hak;Kim, Sol;Lee, Kab-Jae;Lee, Ju;Hong, Kyung-Jin;Choi, Dong-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.3
    • /
    • pp.93-100
    • /
    • 2003
  • Switched reluctance motor(SRM) has some advantages such as low cost, high torque density but SRM has essentially high torque ripple due to its salient structure. In order to apply SRM to industrial field, torque ripple has to be reduced. This paper introduces optimal design process of SRM using an optimization algorithm of Progressive Quadratic Response Surface Modeling(PQRSM) and two-dimensional(2D) Finite Element Method(FEM). The electrical and geometrical design parameters have been adopted as 2D design variables. From this work, it can be obtained both the optimal design minimized torque ripple and the optima1 design maximized the average torque, respectively. Finally, this Paper Presents Performance comparison of two optimal designs and consider influence of the selected design variables in torque characteristics.

The Multi-objective Optimization of Switched Reluctance Motor (스위치드 릴럭턴스 전동기의 다중목적함수의 최적화 방법 연구)

  • Choi, Jae-Hak;Shin, Hyun-Hun;Lim, Jin-Jae;Lee, Ju;Lee, Jung-Ho;Baek, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.118-120
    • /
    • 2002
  • In this paper, a multi-object optimization based on a progressive quadratic response surface method (PQRSM) and a time stepping finite element method (FEM) is proposed. The new PQRSM and FEM are able to decide optimal geometric and electric variables of the switched reluctance motor (SRM) with two objective functions: torque ripple minimization and average torque maximization. The result of the optimum design for SRM show an improved performance of motor and a relationship between torque ripple and average torque.

  • PDF

Optimal Design of a Heat Sink using the Sequential Approximate Optimization Algorithm (순차적 근사최적화 기법을 이용한 방열판 최적설계)

  • Park Kyoungwoo;Choi Dong-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1156-1166
    • /
    • 2004
  • The shape of plate-fin type heat sink is numerically optimized to acquire the minimum pressure drop under the required temperature rise. In constrained nonlinear optimization problems of thermal/fluid systems, three fundamental difficulties such as high computational cost for function evaluations (i.e., pressure drop and thermal resistance), the absence of design sensitivity information, and the occurrence of numerical noise are commonly confronted. Thus, a sequential approximate optimization (SAO) algorithm has been introduced because it is very hard to obtain the optimal solutions of fluid/thermal systems by means of gradient-based optimization techniques. In this study, the progressive quadratic response surface method (PQRSM) based on the trust region algorithm, which is one of sequential approximate optimization algorithms, is used for optimization and the heat sink is optimized by combining it with the computational fluid dynamics (CFD).

Thermal displacement minimization of an oxide target for bonding process by finite element analysis and optimal design (유한요소해석과 최적설계 기법을 활용한 증착용 산화물타겟 접합공정에서의 열 변형 최소화 연구)

  • Cha, Hanyoung;Chung, Chan-Yeup
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.5
    • /
    • pp.208-213
    • /
    • 2020
  • In this research, design optimization was investigated using the finite element analysis and the optimal design technique based on the PQRSM algorithm to minimize the thermal deformation of IGZO oxide in a target module in which IGZO oxide and a copper backplate are bonded to each other. In order to apply the optimal design technique in conjunction with finite element analysis, the x-coordinate of lower supports and upper fixed boards used as design valuables, and the optimal design was performed to minimize the thermal displacement of IGZO materials as the objective function. After the optimization process, the thermal displacement within IGZO oxide could be reduced to 42 % comparing with the initial model. The result is thought to be useful in the industry as it can reduce the thermal deformation of target oxides materials only by changing the position of the subsidiary materials during the bonding process.

Design Optimization of an Automotive Injection Molded Part for Minimizing Injection Pressure and Preventing Weldlines (사출압력 최소화와 웰드라인 방지를 위한 자동차용 사출성형 부품의 최적설계)

  • Park, Chang-Hyun;Pyo, Byung-Gi;Choi, Dong-Hoon;Koo, Man-Seo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.66-72
    • /
    • 2011
  • Injection pressure is an important factor in filling procedure for injection molded parts. In addition, weldlines should be avoided to successfully produce injection molded parts. In this study, we optimally obtained injection molding process parameters that minimize injection pressure. Then, we determined the thickness of the part to avoid weldlines. To solve the optimization problem proposed, we employed MAPS-3D (Mold Analysis and Plastics Solution-3 Dimension), a commercial CAE tool for injection molding analysis, and PIAnO (Process Integration, Automation, and Optimization) as a commercial PIDO (Process Integration and Design Optimization) tool. We integrated MAPS-3D into PIAnO, automated the analysis and design procedure, and performed optimization by employing PQRSM (Progressive Quadratic Response Surface Method) equipped in PIAnO. We successfully obtained optimization results, which demonstrates the effectiveness of our design method.

Optimum Design of Offset-Strip Fins (옵셋 스트립 휜 최적 설계)

  • Kim, Min-Soo;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.531-537
    • /
    • 2010
  • This paper optimized the design parameters of the offset strip fin in a heat exchanger. To decrease the pressure drop and increase heat transfer, the performance factors such as j/f, $j/f^{1/3}$, and JF, which could be used to estimate the pressure drop and heat transfer simultaneously, were employed as the criteria for optimization. In the present study, STDQAO, PQRSM, and MGA were used for solving the constrained nonlinear optimization problem. The JF factor and heat transfer performance of the optimized offset-strip fin were greater than those of the reference offset-strip fin by 36% and 280%, respectively.