• Title/Summary/Keyword: PPMA

Search Result 10, Processing Time 0.022 seconds

A Study on the Gettering in Czochralski-grown Single Crystal Silicon Wafer (Czochralski 법으로 성장시킨 실리콘 단결정 Wafer에서의 Gettering에 관한 연구)

  • 양두영;김창은;한수갑;이희국
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.4
    • /
    • pp.273-282
    • /
    • 1992
  • The effects of intrinsic and extrinsic gettering on the formation of microdefects in the wafer and on the electrical performance at near-surfaces of three different oxygen-bearing Czochralski silicon single crystal wafers were investigated by varying the combinations of the pre-heat treatments and the phosphorus diffusion through the back-surface of the wafers. The wafers which had less than 10.9 ppma of oxygen formed no gettering zones irrespective of any pre-heat treatments, while the wafers which had more than 14.1 ppma of oxygen and were treated by Low+High pre-heat treatments generated the gettering zone comprising oxygen precipitates, staking faults, and dislocation loops. The effects of extrinsic gettering by phosphorus diffusion were evident in all samples such that the minority carrier lifetimes were increased and junction leakage currents were decreased. However, the total gettering effects among the different pre-heat treatments did not necessarily correspond to the gettering structure revealed by synchrotron radiation section topograph.

  • PDF

OXYGEN BEHAVIRO IN SILICON CRYSTAL ANNEALED THROUGH THE SIMULATED THERMAL CYCLE (SIMULATED THERMAL CYCLE로 열처리된 규소 단결정내의 산소 거동)

  • Suh, Dong-Suk;Kwon, Bong-Soo;Kim, Young-Gyu;Choi, Byung-Ho;Park, Jae-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.162-165
    • /
    • 1991
  • Oxygen behaviors in CZ-silicon wafer, grown by the Lucky Advanced Materials Inc. that is a pioneer of silicon material industries in Korea, were investigated to simulate effects on the device performance of oxygen, neglecting the effect of other impurity content, defects and thermal history. Silicon wafers were annealed through simulated 16K SRAM thermal cycle. As initial oxygen concentration increased up to 16.7ppma the amount of oxygen precipitation increased up to 10.6ppma and the bulk microdefect density increased up to $10.3{\times}10^3/mm^2$, but the depth of the denuded zone decreased to $5.0{\mu}m$

  • PDF

Synthesis of a novel non-conjugated Blue emitting material Copolymer and Fabrication of mono color OLED by doping various Fluorescent Dyes

  • Cho Jae Young;Oh Hwan Sool;Yoon Seok Beom;Kang Myung Koo
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.675-679
    • /
    • 2004
  • The existing conjugated blue emitting material polymer which has been used for the two-wavelength method white-emission has good stability and low operating voltage as merits, but the imbalanced carrier transport has been indicated as problem area. We have introduced a novel blue emitting material having perylene moiety unit with hole transporting ability and blue emitting property and triazine moiety unit with electron transporting ability into the same host chain. We have synthesized N-[p-(perylen-3-y1)pheny1]methacry1 amide (PPMA) monomer and [N-(2,4-dipheny1-1,3,5-triazine)pheny1 methacry1 amide] (DTPM) monomer having blue light-emitting unit and electron transport unit, respectively by three steps. A novel non-conjugated blue emitting material Poly[N -[p­(perylene-3-y1) pheny1] methacry1 amide-co-N-[P-(4,6-dipheny1-1,3,5-triazine-2-y1]pheny1]methacry1 amide] (PPPMA-co-DTPM) copolymer having electron transporting unit was synthesized by the solution polymerization of PPMA and DTPM monomers with an AIBN initiator and showed high yield of $75{\%}$. It was very soluble in common organic solvents, and the fabrication of the thin film using a spin coating method was very simple. The PPPMA exhibited a good thermal stability.

  • PDF

Effect of oxygen concentration and oxygen precipitation of the single crystalline wafer on solar cell efficiency (단결정 실리콘에서 산소농도에 따른 산소석출결함 변화와 태양전지 효율에 미치는 영향)

  • Lee, Song Hee;Kim, Sungtae;Oh, Byoung Jin;Cho, Yongrae;Baek, Sungsun;Yook, Youngjin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.6
    • /
    • pp.246-251
    • /
    • 2014
  • Recent studies have shown methods of improving solar cell efficiency. Especially on single crystalline silicon wafer which is high-efficiency solar cell material that has been widely studied. Interstitial oxygen (Oi) is the main impurity in the Czochralski (Cz) growing method, and excess of this can form precipitates during cell fabrication. We have demonstrated the effect of Oi impurity and oxygen precipitation concentration of the wafer on Cz-silicon solar cell efficiency. The result showed a decrease in cell efficiency as Oi and oxygen precipitation increase. Moreover, we have found that the critical point of [Oi] to bring higher cell efficiency is at 14.5 ppma in non-existent Bulk Micro Defect (BMD).

Oxygen Profiles and Precipitation Behavior in CZ Silicon Crystals Grown in A Transverse Magnetic Field (수평자장 하에서 성장된 CZ 실리콘 단결정의 산소 분포 및 석출거동)

  • Kim, Kyeong-Min;Choi, Kwang-Su;P. Smetana;T.H. Strudwick;Lee, Mun-Hui
    • Korean Journal of Materials Research
    • /
    • v.2 no.2
    • /
    • pp.119-125
    • /
    • 1992
  • Oxygen segregation in horizontal-magnetic-field-applied Czochralski (HMCZ) silicon crystals has been studied as a function of magnetic field strength (B) and crucible rotation rate (C). Along the axis of 57mm din. <100> crystals grown under B=2, 3, 4 kG and C=4-15rpm, the oxygen distribution was usually saw-tooth shaped and fluctuated unevenly. Compared to the conventional CZ method, this result seems to indicate that the horizontal magnetic field, at levels used in the present experiment, had a destabilizing influence on oxygen transport to the growth interface. On the other hand, as C increased, the oxygen fluctuation lessened, and [0] increased overall. At B=2 kG, an oxygen profile in a level of 27-36 ppma was achieved by a programmed ramp of C. Oxygen precipitation behavior of the HMCZ silicon during a simulated device manufacturing process was compared and found to be inferior to that of typical CZ silicon. The uneven oxygen profile in the as-grown state was identified as the major source of poor precipitation uniformity in the HMCZ silicon.

  • PDF

A Study on the Three Phase Glass Fiber/Nylon 6/Polyproylene Composites (나일론 6과 폴리프로필렌 수지에 유리섬유가 보강된삼상 복합재료에 관한 연구)

  • 서문호
    • The Korean Journal of Rheology
    • /
    • v.10 no.2
    • /
    • pp.57-64
    • /
    • 1998
  • A pultrusion resin impregnation (PRI) die, which has been developed recently in our laboratory, was used to pre-pare various composite system. The continuous fiber reinforced composites of glass fiber/polypropylene(GFPP) and glass fiber/polyamide 6 (GFPA) were first manufactured by means of the PRI die and then cut into chopped pellets of predet-ermined length. These pellets and either virgin or modified thermoplastic resin were melt-mixed by a twin screw extruder to prepare GF/PA/PP and GF/PA/PPMA system. The mechanical properties of these blends were investigated and discussed in terms of their morphological observations. These preliminary results revealed that this new impregnation die could be suc-cessfully applied to produce prepregs suitavle for the final shaping process.

  • PDF

Fabrication of a White Organic Light Emitting Diode By Synthesizing a Novel Non-conjugated Blue Emitting Material PPPMA-co-DTPM Copolymer (신규 비공액성 청색발광재료 PPPMA-co-DTPM 공중합체 합성을 통한 백색유기발광소자 제작)

  • Cho, Jae-Young;Oh, Hwan-Sool;Kim, Tae-Gu;Yoon, Seok-Beom
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.7
    • /
    • pp.641-646
    • /
    • 2005
  • To fabricate a single layer white organic light emitting diode (OLED), a novel non-conjugated blue emitting material PPPMA-co-DTPM copolymer was synthesized containing a perylene moiety unit with hole transporting and blue emitting ability and a triazine moiety unit with electron transporting ability. The devices were fabricated using PPPMA-co-DTPM $(PPPMA[70\;wt\%]:DTPM[30\;wt\%])$ copolymer by varying the doping concentrations of each red, green and blue fluorescent dye, by molecular-dispersing into Toluene solvent with spin coating method. In case of ITO/PPPMA-co-DTPM:TPB$(3\;mol\%):C6(0.04\;mol\%):NR(0.015\;mol\%)/Al$ structure, as they were molecular-dispersing into 30 mg/ml Toluene solvent, nearly-pure white light was obtained both (0.325, 0.339) in the CIE coordinates at 18 V and (0.335, 0.345) at 15 V. The turn-on voltage was 3 V, the light-emitting turn-on voltage was 4 V, and the maximum external quantum efficiency was $0.667\%$ at 24.5 V. Also, in case of using 40 mg/ml Toluene solvent, the CIE coordinate was (0.345, 0.342) at 20 V.

Estimation of the impurity segregation in the multi-crystalline silicon ingot grown with UMG (Upgraded Metallurgical Grade) silicon (UMG(Upgraded Metallurgical Grade) 규소 이용한 다결정 잉곳의 불순물 편석 예측)

  • Jeong, Kwang-Pil;Kim, Young-Kwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.5
    • /
    • pp.195-199
    • /
    • 2008
  • Production of the silicon feedstock for the semiconductor industry cannot meet the requirement for the solar cell industry because the production volume is too small and production cost is too high. This situation stimulates the solar cell industry to try the lower grade silicon feedstock like UMG (Upgraded Metallurgical Grade) silicon of 5$\sim$6 N in purity. However, this material contains around 1 ppma of dopant atoms like boron or phosphorous. Calculation of the composition profile of these impurities using segregation coefficient during crystal growth makes us expect the change of the type from p to n : boron rich area in the early solidified part and phosphorous rich area in the later solidified part of the silicon ingot. It was expected that the change of the growth speed during the silicon crystal growth is effective in controlling the amount of the metal impurities but not effective in reducing the amount of dopants.

Effcets of Initial Oxygen Concentration on Oxygen Pileup and the Diffusion of Impurities after High-energy Ion Impaltation (초기 산소 농도가 고에너지 이온 주입시 발생하는 산소 축적 및 불순물 확산에 미치는 영향)

  • 고봉균;곽계달
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.4
    • /
    • pp.48-56
    • /
    • 1999
  • In this paper, we have investigated experimentally the effects of initial oxygen concentration on oxygen pileup phenomenon and the diffusion of implanted impurities. 1.2 MeV $^{11}B^{+}$ and 2.2 MeV $^{31}P^{+}$ ions were implanted into p-type (100) Si wafers with a dose of 1${\times}10^{15}$ / $\textrm{cm}^2$. Secondary ion mass spectrometry(SIMS) measurements were carried out to obtain depth distribution profiles for implanted impurities and oxygen atoms after two-step annealing of $700^{\circ}C$(20 hours)+$1000^{\circ}C$(10 hours). Residual secondary defect distribution and annealing behabiour were also studied by cross-sectional transmission electron microscopy(TEM) observations. Oxygen pileup nearly $R_p$(projected range) were observed by SIMS measurements and considerable amount of residual secondary defect layer were observed by TEM observations. It can be seen that oxygen atoms are trapped at the secondary defects by the experimental results. Enhanced diffusions of boron and phosphorus to the bulk direction were observed with the increasing of initial oxygen concentration.

  • PDF

Fabrication of Two-dimensional MoS2 Films-based Field Effect Transistor for High Mobility Electronic Device Application

  • Joung, DaeHwa;Park, Hyeji;Mun, Jihun;Park, Jonghoo;Kang, Sang-Woo;Kim, TaeWan
    • Applied Science and Convergence Technology
    • /
    • v.26 no.5
    • /
    • pp.110-113
    • /
    • 2017
  • The two-dimensional layered $MoS_2$ has high mobility and excellent optical properties, and there has been much research on the methods for using this for next generation electronics. $MoS_2$ is similar to graphene in that there is comparatively weak bonding through Van der Waals covalent bonding in the substrate-$MoS_2$ and $MoS_2-MoS_2$ heteromaterial as well in the layer-by-layer structure. So, on the monatomic level, $MoS_2$ can easily be exfoliated physically or chemically. During the $MoS_2$ field-effect transistor fabrication process of photolithography, when using water, the water infiltrates into the substrate-$MoS_2$ gap, and leads to the problem of a rapid decline in the material's yield. To solve this problem, an epoxy-based, as opposed to a water-based photoresist, was used in the photolithography process. In this research, a hydrophobic $MoS_2$ field effect transistor (FET) was fabricated on a hydrophilic $SiO_2$ substrate via chemical vapor deposition CVD. To solve the problem of $MoS_2$ exfoliation that occurs in water-based photolithography, a PPMA sacrificial layer and SU-8 2002 were used, and a $MoS_2$ film FET was successfully created. To minimize Ohmic contact resistance, rapid thermal annealing was used, and then electronic properties were measured.