• Title/Summary/Keyword: PPFD

Search Result 101, Processing Time 0.023 seconds

Effects of Light Intensity and Electrical Conductivity Level on Photosynthesis, Growth and Functional Material Contents of Lactuca indica L. 'Sunhyang' in Hydroponics (수경재배에서 광도와 양액 농도가 베이비 산채 왕고들빼기 '선향' 광합성과 생육 및 기능성 물질 함량에 미치는 영향)

  • Kim, Jae Kyung;Jang, Dong Cheol;Kang, Ho Min;Nam, Ki Jung;Lee, Mun Haeng;Na, Jong Kuk;Choi, Ki Young
    • Journal of Bio-Environment Control
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • This study was conducted to examine the changes of photosynthesis, growth, chlorophyll contents and functional material contents in light intensity and EC concentration of wild baby leaf vegetable, Indian lettuce (Lactuca indica L. cv. 'Sunhyang') in DFT hydroponics. The cultivation environment was 25±1℃ of temperature and 60±5% of relative humidity in growth system. At 14 days after sowing, combination effect of light intensity (Photosynthetic Photon Flux Density (PPFD 100, 250, 500 µmol·m-2·s-1) and EC level (EC 0.8, 1.4, 2.0 dS·m-1) of nutrient solution was determined at the baby leaf stage. The photosynthesis rate, stomatal conductance, transpiration rate and water use efficiency of Indian lettuce increased as the light intensity increased. The photosynthesis rate and water use efficiency were highest in PPFD 500-EC 1.4 and PPFD 500-EC 2.0 treatment. The chlorophyll content decreased as the light intensity increased, but chlorophyll a/b ratio increased. Leaf water content and specific leaf area decreased as light intensity increased and a negative correlation (p < 0.001) was recognized. Plant height was the longest in PPFD 100-EC 0.8 and leaf number, fresh weight and dry weight were the highest in PPFD 500-EC 2.0. Anthocyanin and total phenolic compounds were the highest in PPFD 500-EC 1.4 and 2.0 treatment, and antioxidant scavenging ability (DPPH) was high in PPFD 250 and 500 treatments. Considering the growth and functional material contents, the proper light intensity and EC level for hydroponic cultivation of Indian lettuce is PPFD 500-EC 2.0, and PPFD 100 and 250, which are low light conditions, EC 0.8 is suitable for growth.

Response of Nutrient Solution and Photosynthetic Photon Flux Density for Growth and Accumulation of Antioxidant in Agastache rugosa under Hydroponic Culture Systems (식물공장에서 양액의 종류 및 PPFD가 배초향의 생장 및 항산화 물질에 미치는 영향)

  • Kim, Sung Jin;Bok, Kwon Jung;Lam, Vu Phong;Park, Jong Seok
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.249-257
    • /
    • 2017
  • Agastache rugosa, is a perennial medicinal plant commonly used in Chinese herbalism, and may have anti-atherogenic and antibacterial properties. Here in this study, we investigated the growth and variations in antioxidant contents of A. rugosa in response to nutrient solution and photosynthetic photon flux density (PPFD) with artificial lighting for a hydroponics culture. Fluorescent light at 150, and $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD with a 16/8 (light/dark) photoperiod, combined with four different nutrient solutions [developed by Horticulture experiment station in Japan (HES), University of Seoul (UOS), Europe vegetable research center (EVR), Otsuka-house 1A (OTS)], were used in a hydroponics culture system for 6 weeks. The shoot and root dry weights of A. rugosa grown with the OTS were significantly higher than those of other nutrient solutions. The amount of tilianin was the highest grown with the OTS, followed by EVR, HES, and UOS. Total acacetin content was the highest in A. rugosa grown under EVR which was statistically similar with OTS. The A. rugosa grown under $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD produced higher fresh weight and both acacetin and tilianin contents than that grown under $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD. The present results suggested that OTS along with $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD could be an optimum growing condition for better growth and higher accumulation of tilianin and acacetin contents in A. rugosa with hydroponic culture systems in a plant factory.

A Study on Growth of the Green Leaf Lettuce Depends on PPFD and Light Quality of LED Lighting Source for Growing Plant (식물재배용 LED 광원의 광질과 PPFD에 따른 청치마상추의 성장에 관한 연구)

  • Yang, Jun-Hyuk;Choi, Won-Ho;Park, Noh-Joon;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.2
    • /
    • pp.142-147
    • /
    • 2015
  • The artificial light sources for growth of plant are usually high-pressure sodium lamp, metal haloids lamp, and fluorescent light; however, these light sources have relatively weaker Red and Blue lights that are necessary for growth of plants. Especially the effect of Photosynthetic Photon Flux Density (PPFD) is pointed out as the weakness. Meanwhile, LED light source can be selected by specific wavelength to greatly improve the effect of PPFD. In this regard, this paper aims to investigate the promotion of plant growth by measuring photosynthetic photon flux density (hereafter referred to as PPFD) according to changes in light quality of the LED light sources. Towards this end, LED light sources for plant growth were produced with 4 kinds of mono-chromatic lights and 6 kinds of combined lights by mixing red, blue, green and white lights. A comparative analysis was conducted to investigate the effects of optical properties and PPFD on plants (green leaf lettuce) using the produced light sources. The results monochromatic light has fastest growth rate, but plant growth conditions have poor. This being so, mixed light is suitable for the green leaf lettuce.

Monitoring of plant induced electrical signal of broccoli (Brassica oleracea var. italica) under changing light and CO2 conditions (광 및 CO2 변화 조건에서 브로콜리(Brassica oleracea var. italica)의 전기적 신호 모니터링)

  • Park, Jin Hee;Kim, Han-Na
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.4
    • /
    • pp.351-356
    • /
    • 2021
  • Changing environmental conditions can affect plant growth by influencing water and nutrient transport and photosynthesis. Plant physiological responses under changing environmental conditions can be non-destructively monitored using electrodes as plant induced electrical signal (PIES). Objective of the study was to monitor PIES in response to increased CO2 and decreased photosynthetic photon flux density (PPFD). The PIES increased during day time when transpiration and photosynthesis occurs and monitored CO2 concentration was negatively correlated to the PIES. Enhanced CO2 concentration slightly reduced PIES, but the effect of increased CO2 was limited by light intensity. The effect of reduced PPFD was not appeared immediately because water and nutrient transport was not promptly affected by the light. The study was conducted to evaluate short-term effect of increasing CO2 and decreasing PPFD, hence proline content and chlorophyll fluorescence was not significantly affected by the conditions.

Growth Responses of Two Evergreen Species (Rosaceae) Native to Korea according to Indoor Light Conditions (실내 광조건에서 자생 상록 장미과 2종의 생육반응)

  • Lee, Ha Min;Lee, Cheol Hee;Cho, Ju Sung
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.61-61
    • /
    • 2019
  • 본 연구에서는 실내 광조건에서 자생 장미과 상록 활엽 목본 2종의 생육반응을 조사하였다. 식물재료는 다정큼나무[Rhaphiolepis indica var. umbellata (Thunb.) Ohashi]와 비파나무[Eriobotrya japonica (Thunb.) Lindl.]의 3년생 실생묘를 사용하였다. 실내 광량은 10, 50, 100 및 200 PPFD (${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$)로 설정되었으며, 광주기(12/12 h), 온도($25{\pm}1^{\circ}C$), 습도($55{\pm}3%$) 및 관수(1회/3일) 주기는 일정하게 유지하였다. 실내에서 8주간 재배한 다음 유리온실에서 동일 기간동안 재배된 대조구와 생육 및 광합성 능력 등을 비교하였다. 연구 결과, 다정큼나무의 생육은 200 PPFD에서 대조구와 유사한 수준이었으며, 줄기직경은 광량과 정비례하는 경향이었다. 엽수는 대조구에 비해 고 광량(100, 200 PPFD) 조건에서 유의적으로 높은 결과를 보였다. 처리 별 최대 양자수율(Fv/Fm) 및 광계II 성능지수(Pi_Abs)는 대조구와 유사한 수준이었으며, 광량에 따른 유의적인 차이가 없었다. 비파나무는 재배기간 동안 광량에 관계없이 생육변화가 크지 않았으나, 엽록소함량은 200 PPFD에서 가장 많았다. 한편 10 PPFD에서는 모든 개체의 잎 고사에 따른 관상가치가 하락하였다. Fv/Fm은 200 PPFD에서 대조구와 유사한 수준이었으며, Pi_Abs는 저광량(10, 50 PPFD) 조건에서 유의적으로 높은 수치였다.

  • PDF

Growth of Potato Plantlets (Solanum tuberosum L. cv. Dejima) in Photoautotrophic Micropropagation System at Different Light Intensities and $CO_2$ Concentrations and Decision of Optimum Environment Conditions with Growth Stage by Modelling (광독립영양 기내 미세증식시스템에서 광강도 및 $CO_2$ 농도에 따른 감자 소식물체 생육분석 및 모델링에 의한 생육단계별 적정 환경조건 설정)

  • Son, Jung-Eek;Lee, Hoon;Oh, Myung-Min
    • Journal of Bio-Environment Control
    • /
    • v.18 no.1
    • /
    • pp.15-22
    • /
    • 2009
  • Adequate environment conditions with growth stage of potato were decided in a photoautotrophic micropropagation system using models. Total 20 day-period of growth were divided into three growth periods such as 6 (stage 1), 7(stage 2), and 7(stage 3) days. At the 1st stage, no significant differences were observed in the growth of potato plantlets at various photosynthetic photon flux density (PPFD) and $CO_2$ conditions. Considering damaged leaves, $80\;mmol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD and ambient $CO_2$ level were adequate in this stage. At the 2nd stage, significant differences were partly observed in several growth characteristics including dry weight. Based on the dry matter model, over $240\;mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD was too high to cultivate potato plantlets at this stage due to the occurrence of damaged leaves. Considering both plant growth and energy efficiency, $160\;mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD and $700\;mol{\cdot}mol^{-1}\;CO_2$ were selected for the adequate combination. At the 3rd stage, the biomass accumulation was significantly induced in potato plantlets under higher levels of PPFD and $CO_2$ concentration as suggested by increased fresh and dry weights. However, we could not find the saturated point with regard to dry matter due to continuous increase of dry mater even under maximum PPFD ($320\;mmol{\cdot}m^{-2}{\cdot}s^{-1})$. Thus, $320\;mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD and $1800\;mol{\cdot}mol^{-1}\;CO_2$ were considered as the best choice at final stage in this study. In conclusion, even though the growth period of micropropagated potato plantlets was quite a short, favorable environmental conditions required at each growth stage were different. This technique could improve the growth of micropropagated plantlets compared to the conventional micropropagation and apply to other agriculturally important crops as well as potato in the future.

Differences on Growth of Two Quercus Species according to Indoor Light Intensity (자생 참나무속 2종의 실내 광량에 따른 생육 차이)

  • Park, Kyungtae;Lee, Cheol Hee;Oh, Chan-Jin;Cho, Ju Sung
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.58-58
    • /
    • 2019
  • 본 연구에서는 자생 참나무속 2종의 몇 가지 저광량 조건하에서 생육 및 엽록소 형광 반응을 조사하였다. 연구의 재료는 참가시나무(Quercus salicina Blume)와 붉가시나무(Q. acuta Thunb.)의 2년생 실생묘를 사용하였다. 다양한 실내 광환경조건을 조사하여 광량을 10, 50, 100 및 200 PPFD (${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$)로 설정하였으며, 실험기간 동안 광주기(12/12 h), 온도($25{\pm}1^{\circ}C$) 및 습도($55{\pm}3%$)를 동일하게 설정하여 총 8주간 재배하였다. 대조구는 유리온실에서 동일기간 동안 재배된 식물을 사용하였다. 연구의 결과, 참가시나무는 50 PPFD 이하에서 전체 식물 중 50%가 잎이 마르며 떨어지는 경향을 보였으며, 100 PPFD에서도 25%의 잎마름이 관찰되었다. 200 PPFD는 줄기직경을 제외한 초장, 엽수, 엽장, 엽폭 및 엽록소 함량(SPAD)이 대조구와 유사하거나 높았으며, 엽록소 형광 반응에서도 모든 측정값이 대조구와 유의한 차이를 보이지 않았다. 붉가시나무는 50 PPFD 이상의 광량에서는 줄기직경, 엽수, 엽장 및 SPAD가 대조구와 유사하거나 높은 결과를 보였으나, 모든 광량조건에서 초장과 엽폭이 대조구에 비해 유의적으로 낮았다. 엽록소 형광 반응은 모든 광량에서 대조구와 비슷한 양상을 보였으나, 10 PPFD는 초기형광값(Fo)과 비광학적 에너지의 손실(DIo/RC)이 대조구에 비해 유의적으로 낮은 결과를 보였다.

  • PDF

Chlorophyll Fluorescence and Growth Response of Three South Korea Native Fern Species under In-door Light Intensity

  • Kyungtae Park;Bo Kook Jang;Cheol Hee Lee;Sang Yeob Lee;Ju Sung Cho
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.63-63
    • /
    • 2020
  • This study investigated the growth of native ferns under indoor light intensities to identify the introduction possibility as in-door ornamental plants. Three evergreen perennial fern species used in this experiment were Coniogramme japonica (Thunb.) Diels, Woodwardia japonica (L. f.) Sm., and Cyclosorus acuminatus (Houtt.) Nakai ex H. Itô. The light intensities were adjusted to 10, 50, 100 and 200 PPFD (µmol·m-2·s-1) based on the measurement of the various indoor light quantities. The experiment was conducted for a total of 8 weeks, and the light period (12/12h), temperature (25±1℃), and humidity (55±3%) were maintained during the experiment. The control plant group was grown in glass greenhouse for the same period. As the result of the study, in door C. japonica showed better growth under light intensities of 100, 200 PPFD. However, withering of the plants were observed under all light intensities except the control, which causes an ornamental value decrease. This seems to be related to the increase of DIo/RC value in chlorophyll fluorescence parameters. In the W. japonica growth data, the plant height was not significantly different from the control but, the leaf number decreased more than a two-fold. Also, the formed leaves turned brown and showed a poor growth and SPAD value at 200 PPFD had decreased significantly. Growth data of C. acuminatus was not significantly different with the control at all light intensities however, withering was observed at 100 and 200 PPFD. In chlorophyll fluorescence parameters, significant decrease in Pi_Abs and increase in DIo/RC value at 200 PPFD impose that stress caused by the intense light might be the reason of the withering of the plants.

  • PDF

Particulate Matter Removal of Indoor Plants, Dieffenbachia amoena 'Marianne' and Spathiphyllum spp. according to Light Intensity (광량에 따른 실내식물 디펜바키아와 스파티필럼의 미세먼지 제거능)

  • Kwon, Kei-Jung;Park, Bong-Ju
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.2
    • /
    • pp.62-68
    • /
    • 2018
  • This study investigated the effect of light intensity on the removal of particulate matter by Dieffenbachia amoena 'Marianne' and Spathiphyllum spp.. An acrylic chamber ($600{\times}800{\times}1200mm$, $L{\times}W{\times}H$) modeled as an indoor space and a green bio-filter ($495{\times}495{\times}1000mm$, $L{\times}W{\times}H$) as an air purification device were made of acrylic. The removal of particulate matter PM10 and PM1, the photosynthetic rate, stomatal conductance, and number of stomata of Dieffenbachia amoena 'Marianne' and Spathiphyllum spp. were measured according to three different levels of light intensity (0, 30 and $60{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$). Regarding the length of time taken for PM10 to reach $1{\mu}g$, the Dieffenbachia amoena 'Marianne' showed a significant difference according to the presence or absence of light, and there was no significant difference shown between light intensity of 30 and $60{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$. As for the Spathiphyllum spp., there was no significant difference between 0 and $30{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$, while a significant difference was shown at $60{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$. After 90 minutes, the PM1, PM10, and $CO_2$ residuals of the Spathiphyllum spp. were lowest at $60{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$. The remaining amount of PM1 and PM10 was lower with the Spathiphyllum spp. than with the Dieffenbachia amoena 'Marianne', even at $0{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}PPFD$. With both plants, the higher the light intensity, the higher the photosynthetic rate, while the stomatal conductance did not show any significant difference. Spathiphyllum spp. showed a higher photosynthetic rate and stomatal conductance and a greater number of stomata than Dieffenbachia amoena 'Marianne', and stomata were observed in both the front and back sides of the leaves. The air purification effect of Spathiphyllum spp. is considered to be better than Dieffenbachia amoena 'Marianne' at the same light intensity due to such plant characteristics. Therefore, in order to select effective indoor plants for the removal of particulate contamination in an indoor space, the characteristics of plants such as the photosynthetic rate and the number and arrangement of stomata according to indoor light intensity should be considered.

Quality Change in Plug Seedlings of Three Indigenous Medicinal Plants after Short-term Cold Storage

  • Oh, Hye Jin;Park, Ji Eun;Park, Yoo Gyeong;Jeong, Byoung Ryong
    • Korean Journal of Plant Resources
    • /
    • v.26 no.6
    • /
    • pp.701-708
    • /
    • 2013
  • To test the quality change of seedlings of three domestic medicinal plants raised in plug trays, a short term storage experiment was conducted. Seedlings were kept in growth chambers for two weeks at 4 or $8^{\circ}C$ temperature combined with 0 or $5{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD. Quality of glasshouse-raised seedlings was assessed after two weeks of cold storage in the growth chamber and one week of acclimation in the greenhouse. After two weeks of storage in the growth chamber of Perilla frutescens var. acuta Kudo, plant height was the greatest in the treatment $8^{\circ}C$ combined with $0{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD. Internode length of P. frutescens var. acuta Kudo was the greatest in the treatment of $4^{\circ}C$ combined with $0{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD. After one week of acclimatization in a glasshouse, the growth and development, such as plant height, internode length and leaf size, were greater in the $8^{\circ}C$ combined with $5{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD than in the other treatments. After two weeks of storage in the growth chamber of Sophora tonkinensis, plant height increased more in the treatment of $4^{\circ}C$ than $8^{\circ}C$. After one week of acclimatization in a glasshouse, number of leaves did not change in the treatment of $4^{\circ}C$ combined with $0{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD, but it increased in the other treatments. Leaf width increased more under the dark than light condition. Leaf length did not observably change in any treatments. After two weeks of storage in the growth chamber, plant height of Angelica gigas Nakai was the greatest in the treatment of $8^{\circ}C$. Number of leaves was the greatest in the treatment of $8^{\circ}C$. Leaf growth was greater under dark than light condition. These results suggested that optimal storage environment was $8^{\circ}C$ combined with $5{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD for P. frutescens var. acuta Kudo, and $4^{\circ}C$ combined with $0{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD for S. tonkinensis and A. gigas Nakai. Hence, proper combination of temperature and PPFD were necessary for better storage, and acclimatization and growth, thereafter, of the plug seedlings of theses plant species.