Growth of Potato Plantlets (Solanum tuberosum L. cv. Dejima) in Photoautotrophic Micropropagation System at Different Light Intensities and $CO_2$ Concentrations and Decision of Optimum Environment Conditions with Growth Stage by Modelling

광독립영양 기내 미세증식시스템에서 광강도 및 $CO_2$ 농도에 따른 감자 소식물체 생육분석 및 모델링에 의한 생육단계별 적정 환경조건 설정

  • Son, Jung-Eek (Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Lee, Hoon (Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Oh, Myung-Min (Department of Horticultural Science, Kansas State University)
  • 손정익 (서울대 식물생산과학부 및 농업생명과학연구원) ;
  • 이훈 (서울대 식물생산과학부 및 농업생명과학연구원) ;
  • 오명민 (캔자스주립대 원예학과)
  • Published : 2009.03.31

Abstract

Adequate environment conditions with growth stage of potato were decided in a photoautotrophic micropropagation system using models. Total 20 day-period of growth were divided into three growth periods such as 6 (stage 1), 7(stage 2), and 7(stage 3) days. At the 1st stage, no significant differences were observed in the growth of potato plantlets at various photosynthetic photon flux density (PPFD) and $CO_2$ conditions. Considering damaged leaves, $80\;mmol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD and ambient $CO_2$ level were adequate in this stage. At the 2nd stage, significant differences were partly observed in several growth characteristics including dry weight. Based on the dry matter model, over $240\;mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD was too high to cultivate potato plantlets at this stage due to the occurrence of damaged leaves. Considering both plant growth and energy efficiency, $160\;mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD and $700\;mol{\cdot}mol^{-1}\;CO_2$ were selected for the adequate combination. At the 3rd stage, the biomass accumulation was significantly induced in potato plantlets under higher levels of PPFD and $CO_2$ concentration as suggested by increased fresh and dry weights. However, we could not find the saturated point with regard to dry matter due to continuous increase of dry mater even under maximum PPFD ($320\;mmol{\cdot}m^{-2}{\cdot}s^{-1})$. Thus, $320\;mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD and $1800\;mol{\cdot}mol^{-1}\;CO_2$ were considered as the best choice at final stage in this study. In conclusion, even though the growth period of micropropagated potato plantlets was quite a short, favorable environmental conditions required at each growth stage were different. This technique could improve the growth of micropropagated plantlets compared to the conventional micropropagation and apply to other agriculturally important crops as well as potato in the future.

본 연구는 묘의 생육을 최대화하기 위하여 생육 단계를 임의로 구분하고 각 단계 별 적정 환경 조건을 확립함에 목적을 두었다. 생육 단계는 총 20일의 배양기간을 6일(1단계), 7일(2단계), 7일(3단계)의 3단계로 구분하였다. 첫 번째 단계는 활착기로서 환경 처리 별 생육에 큰 차이가 나타나지 않았다. 높은 환경 조건에 의한 잎의 장해를 고려하였을 때, $80{\mu}mmol{\cdot}m^{-2}{\cdot}s^{-1}$ 의 PPFD 및 대기 중의 $CO_2$ 농도가 적합하였다. 두 번째 단계에서는 PPFD 및 $CO_2$ 조건이 높아짐에 따라 건물 중을 중심으로 부분적으로 향상되었다. 에너지 효율과 생육을 고려할 때, $160{\mu}mmol{\cdot}m^{-2}{\cdot}s^{-1}$ 의 PPFD와 $700{\mu}mmol{\cdot}mol^{-1}$$CO_2$가 적합할 것으로 생각되었다. 세 번째 단계에서는 PPFD 및 $CO_2$ 농도가 높아짐에 따라 유의적으로 생육이 향상되었으며, 잎 및 마디의 발달상태도 현저히 향상되었다. 따라서 보다 적극적으로 생육증진을 고려할 때, $320{\mu}mmol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD와 $1800{\mu}mol{\cdot}mol^{-1}$$CO_2$가 적합할 것으로 생각되었다. 생육 단계별 환경 조절은 초기단계에 상대적으로 낮은 조건을 유지하고 후기단계에서 충분한 조건을 제공함으로써 건전한 묘를 생산할 수 있고 에너지 및 물질의 투입량을 절약할 수 있다.

Keywords

References

  1. FAO. 2008. http://www.potato2008.org/en/aboutiyp/index.html
  2. Goudriaan, J. and H.H. van Laar. 1994. Modeling potential crop growth processes: Textbook with exercises. Current Issues in Production Ecology Vol 2. Kluwer Academic Publ., Dordrecht, The Netherlands. p.150
  3. Jeong, B.R., K. Fujiwara, and T. Kozai. 1995. Environmental control and photoautotrophic micropropagation. p. 123-170. In: Janick, J. (ed.). Horticultural Reviews. Vol 17. AVI Publishing Co. Inc, Westport
  4. Kirdmanee, C., Y. Kitaya, and T. Kozai. 1995. Effects of CO2 enrichment and supporting material in vitro on photoautotrophic growth of Eucalyptus plantlets in vitro and ex vitro. In Vitro Cell. Dev. Biol. Plant 31:144-149 https://doi.org/10.1007/BF02632010
  5. Kitaya, Y., O. Fukuda, T. Kozai, and C. Kirdmanee 1995. Effects of light intensity and lighting direction on the photoautotrophic growth and morphology of potato plantlets in vitro. Sci. Hortic. 62:15-24 https://doi.org/10.1016/0304-4238(94)00760-D
  6. Kozai, T. and Y. Iwanami. 1988. Effects of CO2 enrichment and sucrose concentration under high photon fluxes on plantlet growth of carnation (Dianthus caryophyllus L.) in tissue culture during the preparation stage. J. Jpn. Soc. Hort. Sci. 57:279-288 https://doi.org/10.2503/jjshs.57.279
  7. Kozai, T. 1991. Micropropagation under photoautotrophic conditions. P.C. p. 447-469. In: Debergh and R.H. Zimmerman (eds.). Micropropagation: technique and application, Academic Press
  8. Kozai, T., C. Cubota, and B.R. Jeong. 1997a. Environmental control for the large-scale production of plants through in vitro techniques. Plant Cell Tissue Organ Culture 51:49-56 https://doi.org/10.1023/A:1005809518371
  9. Kozai, T., N.T. Quynh, and C. Kubota. 1997b. Environmental control and its effects in transplant production under artificial light. J. Kor. Soc. Hort. Sci. 38:194-199.
  10. Mousseau, M. 1986. CO2 enrichment in vitro. Effect of autotrophic and heterotrophic cultures of Nicotiana tabacum (var. Samsun). Photosynthesis Res. 8: 187-191 https://doi.org/10.1007/BF00035249
  11. Murashige, T. and Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  12. Niu, G., T. Kozai, and Y. Kitaya. 1996. Simulation of the time courses of CO2 concentration in the culture vessel and net photosynthetic rate of cymbidium plantlets. Trans. ASAE. 39:1567-1573 https://doi.org/10.13031/2013.27652
  13. Niu, G. and T. Kozai. 1997. Simulation of the growth of potato plantlets cultured photoautotrophically in vitro. Trans. ASAE. 40:255-260 https://doi.org/10.13031/2013.21428
  14. Nobel, P.S. 1991. Physiochemical and environmental plant physiology. Academic Press, Inc., 473-495. San Diego, CA
  15. Nobel, P.S., I.N. Forseth, and S.P. Long. 1993. Canopy structure and light interception. in photosynthesis and production in a changing environment. London, England: Chapman & Hall
  16. Pospisilova, J., I. Ticha, P. Kadlecek, D. Haisel, and S. Plzakova. 1999. Acclimatization of micropropagated plant to ex vitro conditions. Biol. Planta 42:481-497 https://doi.org/10.1023/A:1002688208758
  17. Weidemann, H.L. 1988. Importance and control of potato virus yn (pvyy) in seed potato production. Potato Res. 31:85-94 https://doi.org/10.1007/BF02360024
  18. Zobayed, S.M.A., F. Afreen, Y. Xiao, and T. Kozai. 2004. Recent advancement in research on photoautotrophic micropropagation using large culture vessels with forced ventilation. In vitro Cell. Dev. Biol.-Plant 40:450-458 https://doi.org/10.1079/IVP2004558