• Title/Summary/Keyword: PMSM Torque Control

Search Result 173, Processing Time 0.019 seconds

A MTPA Control of PMSMs Using an Optimization Method (최적화 기법을 이용한 PMSM의 MTPA 제어)

  • Kim, Do-Hyun;Park, Seung-Chan;Kim, Sang-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.439-440
    • /
    • 2020
  • 본 논문에서는 PMSM(Permanent Magnet Synchronous Motor)의 구동 효율 향상을 위한 MTPA(Maximum Torque Per Ampere) 제어 기법에 대해 제안한다. 제안된 기법은 전동기의 동손이 최소가 되도록 최적화 기법을 통해 전류각 지령을 조정한다. 제안된 기법을 통해 모든 부하 조건에서 짧은 시간 내에 동손이 최소가 되는 최적 전류각을 추종할 수 있으며, 전동기의 제정수 혹은 위치 측정 오차에 강인하다. 800W IPMSM 구동 실험을 통해 제안된 기법의 효용성을 검증하였다.

  • PDF

A Study on the Load Torque Observer based on Fuzzy Logic Control for a PM Synchronous Motor (영구자석 동기전동기를 위한 퍼지 제어기법 기반의 부하 토크관측기에 관한 연구)

  • Jung, Jin-Woo;Lee, Dong-Myung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.26-32
    • /
    • 2010
  • This paper proposes a new load torque observer based on the Takagi-Sugeno fuzzy method for a permanent magnet synchronous motor(PMSM). A Linear Matrix Inequality(LMI) parameterization of the fuzzy observer gain is given, and the LMI conditions are derived for the existence of the fuzzy load torque observer guaranteeing $\alpha$-stability and linear quadratic performance. In this paper, a nonlinear speed controller is employed to validate the performance of the proposed fuzzy load torque observer, and various simulation results are presented under motor parameter and load torque variations.

Robust Speed Control of a Permanent Magnet Synchronous Motor using a Fuzzy Logic Controller (퍼지제어기를 이용한 영구자석 동기전동기의 강인한 속도제어)

  • Choi, Young-Sik;Yu, Dong-Young;Jung, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.343-351
    • /
    • 2010
  • This paper proposes a new fuzzy speed controller based on the Takagi-Sugeno fuzzy method to achieve a robust speed control of a permanent magnet synchronous motor (PMSM). The proposed controller requires the information of the load torque, so the second-order load torque observer is used to estimate it. The LMI condition is derived for the existence of the proposed fuzzy speed controller, and the gains of the controller are provided. It is proven that the augmented control system including the fuzzy speed controller and the load torque observer is exponentially stable. To evaluate the performance of the proposed fuzzy speed controller, the simulation and experimental results are presented under motor parameter variations. Finally, it is clearly verified that the proposed control method can accurately control the speed of a permanent magnet synchronous motor.

A Lookup Table Based Loss Minimizing Control for FCEV Permanent Magnet Synchronous Motors

  • Lee, Jung-Gi;Nam, Kwang-Hee;Lee, Sun-Ho;Choi, Soe-Ho;Kwon, Soon-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.201-210
    • /
    • 2009
  • A loss minimizing controller is developed for a fuel cell electric vehicle (FCEV) permanent magnet synchronous motor (PMSM). The PMSM losses are modeled by some experimental equations. Applying Lagrangian to the loss function, a necessary condition for the optimality appears to be a fourth order polynomial, and the loss minimizing solutions are obtained by a simple numerical approach. On the other hand, the loss minimizing solutions are found by scanning the motor loss in the entire operating region. The two results agree well. The loss minimizing current sets for given torque and speed are made into a table, which is utilized as a look-up in the current control loop.

Digital Control System Of PMSM Type AC Servo Motor Using Micro-Processor (마이크로 프로세서에 의한 영구자석 동기 전동기형 AC 서보 전동기 디지탈 제어계 설계)

  • Yoon, Byung-Do;Kim, Eel-Hwan;Lee, Nae-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.321-324
    • /
    • 1988
  • This paper presents the result of driving performance analysis of PMSM type AC servo motor based on control system using a microprocessor. The experiment using the microprocessor is tested with a 120[v], 200[w] PMSM type AC servo motor. The PWM signal generated in the microprocessor for the servo motor voltage is chapped by power transistor modules to change the AC servo motor speed. The torque of the AC servo motor with a permanent magnet can be easily controlled over a wide range by changing the AC servo motor current.

  • PDF

Performance Improvement of a PMSM Sensorless Control Algorithm Using a Stator Resistance Error Compensator in the Low Speed Region

  • Park, Nung-Seo;Jang, Min-Ho;Lee, Jee-Sang;Hong, Keum-Shik;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.485-490
    • /
    • 2010
  • Sensorless control methods are generally used in motor control for home-appliances because of the material cost and manufactureing standard restrictions. The current model-based control algorithm is mainly used for PMSM sensorless control in the home-appliance industry. In this control method, the rotor position is estimated by using the d-axis and q-axis current errors between the real system and a motor model of the position estimator. As a result, the accuracy of the motor model parameters are critical in this control method. A mismatch of the PMSM parameters affects the speed and torque in low speed, steadystate responses. Rotor position errors are mainly caused by a mismatch of the stator resistance. In this paper, a stator resistance compensation algorithm is proposed to improve sensorless control performance. This algorithm is easy to implement and does not require a modification of the motor model or any special interruptions of the controller. The effectiveness of the proposed algorithm is verified through experimental results.

Flux Weakening Control for Surface Mounted Permanent Magnet Synchronous Machine Driven by Dual Inverter (이중 인버터를 이용한 표면 부착형 영구자석 동기전동기의 약자속 제어)

  • Kim, Youngnam;Lee, Yongjae;Ha, Jung-Ik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.437-442
    • /
    • 2013
  • For open-end permanent magnet synchronous machine(PMSM) with dual inverter system, where one inverter is connected to the source and the other is flying, the dc link voltage of the flying inverter can be boosted through the machine. For this reason, when compared with single inverter drive system, higher voltage can be applied to PMSM, and higher torque can be generated in the flux weakening region. In this case, however, active and reactive powers are separately supplied by each inverter to maintain the dc link voltage of flying inverter. Therefore, the required flux weakening control is different from the conventional method for a single inverter drive system. This paper proposes the novel flux weakening control method which maximizes the active voltage component in a dual inverter PMSM drive system. The proposed method was demonstrated and verified through experimental results.

Analysis and Control of NPC-3L Inverter Fed Dual Three-Phase PMSM Drives Considering their Asymmetric Factors

  • Chen, Jian;Wang, Zheng;Wang, Yibo;Cheng, Ming
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1500-1511
    • /
    • 2017
  • The purpose of this paper is to study a high-performance control scheme for neutral-point-clamping three-level (NPC-3L) inverter fed dual three-phase permanent magnet synchronous motor (PMSM) drives by considering some asymmetric factors such as the non-identical parameters in phase windings. To implement this, the system model is analyzed for dual three-phase PMSM drives with asymmetric factors based on the vector space decomposition (VSD) principle. Based on the equivalent circuits, PI controllers with feedforward compensation are used in the d-q subspace for regulating torque, where the cut-off frequency of the PI controllers are set at the twice the fundamental frequency for compensating both the additional DC component and the second order component caused by asymmetry. Meanwhile, proportional resonant (PR) controllers are proposed in the x-y subspace for suppressing the possible unbalanced currents in the phase windings. A dual three-phase space vector modulation (DT-SVM) is designed for the drive, and the balancing factor is designed based on the numerical fitting surface for balancing the DC link capacitor voltages. Experimental results are given to demonstrate the validity of the theoretical analysis and the proposed control scheme.

Precision Speed Control of PMSM Using Disturbance Observer and Parameter Compensator (외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀속도제어)

  • 고종선;이택호;김칠환;이상설
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.98-106
    • /
    • 2001
  • This paper presents external load disturbance compensation that used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator. As a result, the response of PMSM follows that of the nominal plant. The load torque compensation method is compose of a dead beat observer that is well-known method. However it has disadvantage such as a noise amplification effect. To reduce of the effect, the post-filter, which is implemented by MA process, is proposed. The parameter compensator with RLSM(recursive least square method) parameter estimator is suggested to increase the performance of the load torque observer and main controller. Although RLSM estimator is one of the most effective methods for online parameter identification, it is difficult to obtain unbiased result in this application. It is caused by disturbed dynamic model with external torque. The proposed RLSM estimator is combined with a high performance torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation and experiment, are shown in this paper.

  • PDF

Sensorless Vector Control for Maximum Torque of SynRM in the Field Weakening Region (약계자 영역에서 SynRM의 최대 토크제어를 위한 센서리스 벡터제어)

  • Lee, Jung-Chul;Chung, Dong-Hwa
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.2
    • /
    • pp.32-38
    • /
    • 2002
  • In this paper, a new approach for the SynRM(Synchronous Reluctance Motor) control which ensures producing MTPA(Maximum Torque per Ampere) over the entire field weakening region is presented. In addition, this paper presents a speed sensorless control scheme of SynRM using flux observer. Also, by adjusting the base speed for the field weakening operation according to the flux level, the current and voltage limit, the smooth and precise transition into the field weakening operation can be achieved. The validity of the proposed scheme is verified through simulation.