• Title/Summary/Keyword: PMSM Control

Search Result 466, Processing Time 0.028 seconds

영구자석 동기 서보 전동기의 제어에 관한 연구 (A study on Permanent Magnet Synchronous Servo Motor Control)

  • 김종구;최욱돈;정명길;이현상;김명찬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.543-547
    • /
    • 1991
  • This paper illustrates maximum torque per ampare radio operation and efficiency operation, which are prevalently applied to the control of permanent magnet synchronous motor(PMSM). Maximum torque per ampare ratio operation minimizes the copper loss of PMSM and maximum efficiency operation minimizes the total loss of PMSM. To verify the difference of these method, simulation and experiment results applied to IPMSM(Interior type PMSM) and SPMSM(Surface mounted PMSM) are presented.

  • PDF

SVM Regression을 이용한 PMSM의 속도 추정 (Speed Estimation of PMSM Using Support Vector Regression)

  • 한동창;백운재;김성락;김한길;심준홍;박광원;이석규;박정일
    • 제어로봇시스템학회논문지
    • /
    • 제11권7호
    • /
    • pp.565-571
    • /
    • 2005
  • We present a novel speed estimation of a Permanent Magnet Synchronous Motor(PMSM) based on Support Vector Regression(SVR). The proposed method can estimate wide speed range, including 0.33Hz with full load, accurately in the steady and transient states where motor parameters variations are known without parameter estimator. Moreover, the method does not need offline training previously but is trained on-line. The training starts with the PMSM operation simultaneously and estimates the speed in real time. The experimental results shows the validity and the usefulness of the proposed algorithm for the 0.4Kw PMSM DSP(TMS320VC33) drive system.

PMSM의 자속-토크 밴드를 고려한 DTC-PWM 제어 방식 (DTC-PWM control method of PMSM using the flux-torque Band)

  • 김승준;박준휘;김지원;이동희
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 전력전자학술대회
    • /
    • pp.63-65
    • /
    • 2018
  • This paper presents a DTC-PWM(Direct Torque Control-Pluse Width Modulation) method of PMSM(Permanent Magnet Synchronous Motor) using the flux-torque hysteresis band. In order to keep the flux and torque error of the PMSM within the hysteresis band, the optimal PWM duty ratio is calculated by the error of the flux and torque with the flux and torque vector of the selected voltage vector. According to the flux duty ratios and the torque duty ratios, the optimized duty ratio to reduce the errors is selected by the calculated duty ratios. In the proposed method, the selected voltage vector is divided into d-q axis components with a simple method. And the flux duty ratios and torque duty ratios are estimated by the applied voltage vector. The proposed DTC-PWM for PMSM was verified by computer simulation.

  • PDF

신경망 보상기를 이용한 PMSM의 간단한 지능형 강인 위치 제어 (Simple Al Robust Digital Position Control of PMSM using Neural Network Compensator)

  • 고종선;윤성구;이태호
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권8호
    • /
    • pp.557-564
    • /
    • 2000
  • A very simple control approach using neural network for the robust position control of a Permanent Magnet Synchronous Motor(PMSM) is presented. The linear quadratic controller plus feedforward neural network is employed to obtain the robust PMSM system approximately linearized using field-orientation method for an AC servo. The neural network is trained in on-line phases and this neural network is composed by a feedforward recall and error back-propagation training. Since the total number of nodes are only eight, this system can be easily realized by the general microprocessor. During the normal operation, the input-output response is sampled and the weighting value is trained multi-times by error back-propagation method at each sample period to accommodate the possible variations in the parameters or load torque. In addition, the robustness is also obtained without affecting overall system response. This method is realized by a floating-point Digital Signal Processor DS1102 Board (TMS320C31).

  • PDF

무향 칼만 필터에 의한 영구자석 동기 전동기 센서리스 속도제어 (Sensorless speed control of Permanent Magnet Synchronous Motor by Unscented Kalman filter)

  • 문철;권영안
    • 한국정보통신학회논문지
    • /
    • 제16권5호
    • /
    • pp.967-972
    • /
    • 2012
  • 영구자석 동기전동기은 높은 효율성과 우수한 토크 발생 및 벡터 제어 성능이 뛰어나 많은 산업 현장을 포함하여 광범위하게 활용되어 지고 있다. 정밀한 제어를 위해서는 회전자의 속도 및 위치 정보를 필요로 하지만 속도 센서를 사용하면 안정성 및 환경의 영향에 신뢰도가 감소하는 단점이 있다. 센서리스 속도 제어 방식에서 측정된 값은 노이즈를 포함하게 되며 이는 정밀한 속도 제어에서 성능을 저해하는 방식으로 나타난다. 본 논문에서는 영구자석 동기전동기의 센서리스 속도 제어를 하기 위해 고정자 전류 및 속도와 회전자 위치를 무향 칼만 필터를 이용하여 추정하였으며 시뮬레이션을 통해 기존의 방식인 확장 칼만 필터와 상호 비교하였다. 제안된 모델의 타당성을 입증하기 위해 시뮬레이션을 수행하였으며 동일한 모델을 통한 실험에서 속도 오차 정확성을 검증하였다.

광-ETherCAT 네트워크 기반 PMSM의 벡터제어 구현 (An Implementation of Vector Control of AC Servo Motor based on Optical-EtherCAT Network)

  • 김용진;김광헌;배영철
    • 한국전자통신학회논문지
    • /
    • 제8권4호
    • /
    • pp.583-588
    • /
    • 2013
  • 본 논문에서는 로봇에서 다축 모션 제어를 쉽게 할 수 있는 AC 서보 드라이버의 성능 검증을 위하여 벡터 전류 제어 구현 기법을 제안한다. 이를 위해 먼저 PMSM을 구동을 위한 드라이버를 개발한 후 이 드라이버가 정상적으로 동작하는지를 벡터 전류로 확인하였다. 벡터 제어는 무부하에서 전류 벡터 제어를 실행하여 지령 전류에 따른 추종 전류를 비교하였다. 검증 결과 만족할 만한 결과를 얻었음을 확인하였다.

Implementation of Position Control of PMSM with FPGA

  • Reaugepattanawiwat, Chalermpol;Eawsakul, Nitipat;Watjanatepin, Napat;Pinprathomrat, Prasert;Desyoo, Phayung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1254-1258
    • /
    • 2004
  • This paper presents of position control of Permanent Magnet Synchronous Motor (PMSM) the implementation with Field Programmable Gate Array (FPGA) is proposed. Cascade control with inner loop as a current control and an outer loop as a position control is chosen for simplicity and fast response. FPGA is a single chip (single processing unit), which will perform the following tasks: receive and convert control signal, create a reference current signal, control current and create switch signal and act as position controller in a addition of zero form. The 10 kHz sampling frequency and 25 bit of floating point data are defined in this implementation.The experimental results show that the performance of FPGA based position control is comparable with the hardware based position control, with the advantage of control algorithm flexibility

  • PDF

Robust Adaptive Wavelet-Neural-Network Sliding-Mode Speed Control for a DSP-Based PMSM Drive System

  • El-Sousy, Fayez F.M.
    • Journal of Power Electronics
    • /
    • 제10권5호
    • /
    • pp.505-517
    • /
    • 2010
  • In this paper, an intelligent sliding-mode speed controller for achieving favorable decoupling control and high precision speed tracking performance of permanent-magnet synchronous motor (PMSM) drives is proposed. The intelligent controller consists of a sliding-mode controller (SMC) in the speed feed-back loop in addition to an on-line trained wavelet-neural-network controller (WNNC) connected in parallel with the SMC to construct a robust wavelet-neural-network controller (RWNNC). The RWNNC combines the merits of a SMC with the robust characteristics and a WNNC, which combines artificial neural networks for their online learning ability and wavelet decomposition for its identification ability. Theoretical analyses of both SMC and WNNC speed controllers are developed. The WNN is utilized to predict the uncertain system dynamics to relax the requirement of uncertainty bound in the design of a SMC. A computer simulation is developed to demonstrate the effectiveness of the proposed intelligent sliding mode speed controller. An experimental system is established to verify the effectiveness of the proposed control system. All of the control algorithms are implemented on a TMS320C31 DSP-based control computer. The simulated and experimental results confirm that the proposed RWNNC grants robust performance and precise response regardless of load disturbances and PMSM parameter uncertainties.

중첩의 정리를 이용한 PMSM의 센서리스제어에 관한 연구 (Study On the Sensorless PMSM Control Using the Superposition Theory)

  • 박성준;박한웅;김대웅;백승면;이만형
    • 제어로봇시스템학회논문지
    • /
    • 제8권1호
    • /
    • pp.5-14
    • /
    • 2002
  • This study presents a solution to control a Permanent Magnet Synchronous Motor without sensors based on the superposition principle. Because the proposed method of sensorless theory is very simple to compute the estimated angle, computing time to estimate the angle is shorter than other sensorless method. The use of this system yields enhanced operations, fewer system components, lower system cost, energy efficient control system design and increased efficiency. The performance of a sensorless architecture allows an intelligent approach to reduce the complete system costs of the digital motion control applications using cheaper electrical motors without sensors. This paper deals with an overview of sensorless solutions in PMSM control applications whereby the focus will be on the new controller without sensors and its applications.

신경망 보상기를 이용한 PMSM의 간단한 지능형 강인 위치 제어 (Simple AI Robust Digital Position Control of PMSM using Neural Network Compensator)

  • 윤성구
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.620-623
    • /
    • 2000
  • A very simple control approach using neural network for the robust position control of a Permanent Magnet Synchronous Motor(PMSM) is presented The linear quadratic controller plus feedforward neural network is employed to obtain the robust PMSM system approximately linearized using field-orientation method for an AC servo. The neural network is trained in on-line phases and this neural network is composed by a fedforward recall and error back-propagation training. Since the total number of nodes are only eight this system can be easily realized by the general microprocessor. During the normal operation the input-output response is sampled and the weighting value is trained multi-times by error back-propagation method at each sample period to accommodate the possible variations in the parameters or load torque. And the state space analysis is performed to obtain the state feedback gains systematically. IN addition the robustness is also obtained without affecting overall system response. This method is realized by a floating-point Digital Singal Processor DS1102 Board (TMS320C31) The basic DSP software is used to write C program which is compiled by using ANSI-C style function prototypes.

  • PDF