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Speed Estimation of PMSM Using Support Vector Regression
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Abstract : We present a novel speed estimation of a Permanent Magnet Synchronous Motor(PMSM) based on Support Vector
Regression(SVR). The proposed method can estimate wide speed range, including 0.33Hz with full load, accurately in the steady and
transient states where motor parameters variations are known without parameter estimator. Moreover, the method does not need off-
line training previously but is trained on-line. The training starts with the PMSM operation simultaneously and estimates the speed in
real time. The experimental results shows the validity and the usefulness of the proposed algorithm for the 0.4Kw PMSM

DSP(TMS320VC33) drive system.
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L. INTRODUCTION

Permanent magnet AC synchronous machines are widely used due
to the development of power electronics and powerful signal
processing microprocessors. The vector control of a permanent
magnet synchronous motor is usually implemented through
measuring the speed and position of the rotor. However, speed and
position sensors require additional mounting space, reduce the
reliability in harsh environments and increase the cost of a motor
control system. Various control algorithms have been proposed for the
elimination of speed and position sensors: estimators using state
equations, Luenberger[1,2] or Kalman-filter observers[3,4] artificial
intelligence[5-7]. These methods demonstrate excellent performance
in middle and high speed applications. Nevertheless, in a more or less
important degree depending on the characteristics of the particular
observer, problems related to low and standstill operation, knowledge
of motor parameters, influence of measurement disturbances and the
computational charge of these methods still remain. Recently, new
approaches to rotor position detection have been presented: saliency
effects{8], and injection of proper test signal{9,10]. These methods
offer a solution for both standstill and low speed operation, but they
require high precision in the measurement. Moreover, the additional
voltage to inject the test signal decreases the operating range at high
speed.

In this paper, a novel estimation of a PMSM using Support Vector
Regression(SVR) based on statistical learning theory is presented.
Recently, a novel neural network algorithm, called Support Vector

Machine(SVM), was developed by Vapnik and his co-workers[11,12].

Unlike most of the traditional neural network models . which
implement the empirical risk minimization principle, SVM
implements the structural risk minimization principle which seeks to
minimize an upper bound of the generalization error rather than the
training error. This induction principle is based on the fact that the
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generalization error is bounded by the sum of the training error and a
confidence interval term that depends on the Vapnik-Chervonenkis
(VC) dimension. Based on this principle, SVM achieves an optimum
network structure by striking a right balance between the empirical
error and the VC-confidence interval. This eventually results in better
generalization performance than other neural network models.
Another merit of SVM lies in the training of SVM equivalent to
solving a linearly constrained quadratic programming.

Stationary voltage model is necessary to estimate the speed of a
PMSM. The proposed method can estimate high speed and low speed
range, including 0.33Hz with full load, accurately in the steady states
and transient where motor parameters variations are known. Also, the
method does not need off-line training previously but is trained on-fine.
The training starts with the PMSM operation simultaneously and
estimates the speed in real time. The validity and the usefulness of
proposed algorithm are thoroughly verified through numerical
simulation and experiment on the 0.4Kw PMSM drive system.

II. MATHEMATICAL MODELING OF PMSM
Voltage models of stator and rotor, torque, and dynamic equation of
PMSM are shown in this chapter.
The proposed SVR Speed estimation algorithm uses the stationary
reference frame fixed to the stator voltage model for the voltage
estimation. From the stator voltage equations in the real d: -axis, and

g: -axis voltage equations in the stationary reference frame fixed to

the stator can be expressed as

Vg = Ry + L, %% - K,@,sin(6,) M
) di,

vl =Rl +L, —j +K,m, cos@,) @

e;, = —K,0,sin(d,) (€)

e, =K, m, cos(6,) )

where v;;qs is stator voltage, i;qs is stator current, R is stator
resistance, [ is stator inductance, @, is the angie of rotor and K,.

e;qs is the back-EMF constant, back-EMF respectively.
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d] -axis, and ¢/ -axis voltage equations in the rotor reference

frame fixed to the stator can be expressed as

di, )
Vi, =Riy +L,—*—wLi, ®
dt
r -r dl‘;' .
vo, =Rl +L —"+w,Li, +oK, ©
dt

where " isrotor voltage, ;7 isrotor current.
dgr dgr

The electromagnetic torque in the rotor reference frame may be
expressed as

T, =K,i, 0]

where K, istorque constant

The mechanical equation of a PMSM may be expressed as

T=J 9%m.p g o7, ®
dt

e m

where J, is the inertia coefficient and B, is the friction
coefficient, vis the mechanical speed of the rotor, and T, istheload
torque.

III. SUPPORT VECTOR MACHINE REGRESSION

A regression method is an algorithm that estimates an unknown
mapping between a system's input and outputs, from the available data
or training data. Once such a dependency has been accurately
estimated, it can be used for prediction of system outputs from the
input values. The goal of regression is to select a function which
approximates best the system's response. A function approximation
problem can be formulated to obtain a finction f from a set of

observations, (y,,x,),...,(¥y,xy) With x€R™ and yeR,

where N is the number of training data, x is the input vector, and
¥ isthe output data. The function in SVR has the form of

f(x,w)= wa (x)+b )

where K (-) is a mapping from R™ to so-called higher
dimensional feature space F we F is a weight vector to be

identified in the function, and b is a bias term. To calculate the
parameter vector @ , the following cost function should be
minimized[13,14]

Mo off +c (6 +)

subject to

Fig. 1. A feature map from input space to higher dimensional feature
space.
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where C is a pre-specified value that controls the cost incurred by

training errors and the slack variables, £ & are introduced to

. accommodate error on the input training set. With many reasonable

choice of loss function, £, the solution will be characterized as the
minimum of a convex function. The constraints also include a term,
&, which allows a margin of error without incurring any cost. The
value of € can affect the number of support vectors used to construct
the regression function. The bigger & is, the fewer support vectors
are selected. Hence, & -values affect model complexity.

Our goal is to find function f(x, o) that has at most & deviation
from the actually obtained targets y, for'all the training data, and at
the same time, is as flat as possible for good generalization. In other
words, we do not care about errors as long as they are less than &,
but will not accept any deviations larger than & . This is equivalent to
minimizing an upper bound on the generalization error, rather than
minimizing training error.

The optimization problem in (6) can be transformed into the dual
problem[13,14], and its solution is given by

N
7@ = a,—a; kK (x)- K(x)+b
i=1
st.0<a@; <C,0<q,<C (1)

In (7), the inner product (K(x,)- K (x)) in the feature space is
usually considered as a kernel function g x,,x) - Several choices for

the kernel are possible to reflect special properties of approximating
functions:

Linear kemel : K (x,,x) = x"x,

RBF kemel : K (x,,x) = exp(—|x = x| / o) (12)

The input data are projected to a higher dimensional feature space
by mapping K(-). A linear regression is made in this higher
dimensional feature space, responding to a nonlinear regression in the
original input space of interest as shown in Fig. 1.

IV. SPEED ESTIMATION USING SVR
The speed estimator is derived by estimating the voltage where the

measured voltage, v;qx , and the sum of the terms with motor
parameters in controller of eq. (1) anﬂ (2) are compatible. Since the
speed is estimated based on the estimated voltage, robust estimation
can be performed without compensating for parameter variation of

motor. Equations (1) and (2) can be transformed to equations (13)
and (14).

() +OLY =@ +@) +(K.0.) (os( 6)
+sin( )% =R HE)) +Klo ?
Kiad =(4) +(0,) —R((5) +(5)%)

(13)
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o =KieJ<v;)2+(v;>t1e2«i;)2+(z;>2)-sz'gn @
+Ya” o 20y, Clock wide

where, sign(af? )=
~I(ef? <0), Counter ~ clock wide

In equation (13) and (14), 7 igs is ot contained, under the
. s t

assumption that estimation of stator current is not changed in a period
of sampling time. The voltage and current are measured, while resistor,
inductance and Back-emf are known parameters. SVR Speed
estimation algorithm needs target and training data for training. Target
data and training data are defined as (v)’ + (v;s)2 ,

and((i5.)" + (i), )?) respectively. The basic idea is to minimize error

between measured voltage and calculated voltage in the controller.
Hence, Robust speed estimation under parameter R, L_variation

circumstance is achieved. The speed estimation model is expressed as

y=05 )+’ (15)
x= (05 + () (16)
b=(Kw,) (17)

Using quadratic loss function, one has to find Lagrange multipliers

0,0, i=1,..., N, that minimize the quadratic form

i(“f -0} (@ —a)) K (x.x;)

) G (18)
R AL )+%§(0§ —a).

i=l

w(a,a) )=

N | —

The regression function is given by
T *
@ X=Z<0{i—ai)K(X,.,X) (19)

b=mean(§{y,—(a,.—a,.‘)K(xi,x)}j. 0)

i=l

In order to solve this problem, one has to choose C and €.
Parameters C and € usually are selected by users based on a
prior knowledge of expert users. It is well-known that the value of €
should be proportional to the input noise level that is difficult to
estimate from data and the value of € can effect the number of
support vectors used to construct the regression function. In other
words, SVR performance depends on C and € . Unfortunately,
SVR framework does not provide clear guidelines on how to select
the valueof C and €.

Hence, under our approach, we propose to choose quadratic loss
function with zero € - value (€ = 0). For selection of C directly
from the training data, we propose to use the following prescription
for regularization parameter.

A. Selection of parameter C

Parameter C determines the trade off between the model
complexity (flatness) and the degree to which deviations larger than
€ are tolerated in optimization formulation.

Fig. 2. Insensitive band for a one dimensional regression with small
parameter C.

Fig. 3. Insensitive band for a one dimensional regression with large

parameter C.
()’ +(V;s)2—* LBF — a")
—
SVR Speed r
( l.;y )2 +( i;s )2 Estimator . 9},

Fig. 4. Structure of the speed estimator using SVR.

The smaller C is less sensitive to the noisy data or outliers as
shown in Fig. 2. The larger C gives less training error with more of
the noisy data included as shown in Fig. 3 and this increases the model
complexity. At boundary, there are some bound Support vectors
whose Lagrange multipliers equal the € parameter. In this study,
parameter C is selected as maximum voltage value.

Combining (15), (16), and (17), the estimated voltage is given by

1]
M=

AS
vdqs

(a,.——a;)K(x,,,x)=ixi~ﬁi- @1

n

i

where [3; is some real value and its maximum equals.

Equation (14) can be expressed as

o

X JE+OL 0" (@ +@ ) esign () @)

S =

VL EXPERIMENTS
The experiment has been performed for the verification of the
speed estimation algorithm. The experiment conditions are as follows
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Table 1. Motor specifications.

Number of Pole 8

Rs,Ls 1.49[ €2 1,9.53e-3[H]
Back-emf constant 025

Nominal power 0.4Kw

Fig. 5. The experimental apparatus.

In the experiment, the switching frequency of the inverter is
5Khz(200usec), control period is 10Khz(100usec), training input
signal is lowpass filtered at bandwidth of 100Hz, and sampling period
of SVR estimator is 10Khz(100usec).The DSP(TMS320VC33)
system is used for the digital processing of the proposed algorithm.
The experimental apparatus is shown in Fig. 5. Fig. 6 shows that rotor
speeds for transient and steady state approach to measured values at
low speed(Fig. 6(a)), medium speed (Fig. 6(b)), and high speed(Fig.
6(c)) without load. It is well known that speed estimation at low speed
is difficult. Fig. 7 and Fig. 8 depict the speed estimation results with
parametric variation of stator resistor R, and stator inductance L

at both low and high speed with load. The speed characteristic with
130% variation of stator resistor is described in Fig. 7. At low speed as
shown in Fig. 7(a), the speed estimation is robust to variation of
resistor with negligible noise. Fig. 7(b) shows good speed estimation
for both transient and steady state at 500 rpm. This paper proposes
equation 22 without stator inductance L.

Speed estimation at transient and steady state with 120% variation
of stator inductance 7, is depicted in Fig. 8. As shown in Fig. &(a),

we can get satisfactory result at steady state without any influence by
stator inductance differently from transient state. Fig. 8(b) shows good
characteristic of speed estimation regardless of variation of stator
inductance [, for both transient and steady state. The g-axis currents

with full load are described in Fig. 9-12. In Figures 4(®)-11(®), g-

KO- S8 - AIAEES =2X M 11 &, W 7 2 2005.7

axis current is shown for low speed estimation with load as Fig. 7(a)
and Fig. 8(a). The proposed algorithm shows good result at low speed
though variation of g-axis current at low speed is bigger than that at
high speed as shown in Fig. 12(3).

Speed(50rpm/div)

(a) Time(200ms/div)

Y

Speed(50rpm/div)

" (b) Time(200ms/div)

o e 43 ke o e e g

Speed(500rpm/div)

m»...-./ vsk,..;n;.,.u,“ ‘i‘ Bt e b e i

(o) Time(00ms/div) ’

Speed(1000rpm/div)

(d)Time&OOms/div)
Fig. 6. Rotor speed response(2: estimated speed, (D: measured

speed), at (@) 0 rpm, (b) 0-10 rpm, (c) 0-500 rpm, (d) 0-1500
. Ipm.

Speed(50rpm/div)

() Tare(200nms/div)

Speed(500rpm/div)

(B Time(200nw/div)

Fig. 7. Rotor speed step response(@): estimated speed, (0: measured
speed) with parameter variation R =1.3e R at (a) 0-10
rpm, (b) 0-500 rpm.
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Speed(50rpm/div)

(a) Tm%@()On’s/(ﬁv)

v
(b) Time(200ms/div)

Fig. 8. Rotor speed step response(@); estimated speed, : measured
speed) with parameter variation [ =12eL_ at (a) 0-10
pmy, (b) 0-500 rpm.
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Fig. 9. Rotor speed response of 5 rppm with full load(@: estimated
speed, ) measured speed, 3: qse ).
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Fig. 10. Rotor speed response of 15 rpm with full load(@; estimated
speed, (2: measured speed, 3 iqse ).
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Fig. 11. Rotor speed response of 40 rpm with full load((D: estimated
speed, @ measured speed, @) : iqse ).
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Time(200ms/div)

Fig. 12. Rotor speed response of 500 rpm with full loadD: estimated
speed, (@ measured speed, 3 iqse ).

VI. CONCLUSIONS

The SVR method is an algorithm that estimates an unknown
mapping between a system's input and outputs, from the available data
or training data. Stationary voltage model is necessary to estimate the
speed of a PMSM. The proposed method can estimate wide speed
range, including 0.33Hz with full load, accurately in the steady states
and transient where motor parameters variations are known without
compensation for parameter variation of motor. Also, the method does
not need off-line training previously but is trained on-line. The training
starts with the PMSM operation simultaneously and estimate the
speed in real time. The simulation and experimental result show the
validity and the usefulness of proposed algorithm.

Based on the experimental results for estimation of parameters, an
effective control algorithm is under research in our lab.
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