• Title/Summary/Keyword: PMMA 렌즈

Search Result 39, Processing Time 0.024 seconds

Modeling and Replication of Microlens Arrays Fabricated by a Modified LIGA Process (변형 LIGA 공정을 통해 제작된 마이크로 렌즈 어레이의 모델링 및 성형)

  • Kim D. S.;Lee H. S.;Lee B. K.;Yang S. S.;Lee S. S.;Kwon T. H.
    • Transactions of Materials Processing
    • /
    • v.15 no.1 s.82
    • /
    • pp.34-41
    • /
    • 2006
  • Microlens arrays were fabricated by a modified LIGA process composed of the exposure of a PMMA (Polymethylmethacrylate) sheet to deep x-rays and subsequent thermal treatment. A successful modeling and analyses for microlens formation were presented according to the experimental procedure. A nickel mold insert was fabricated by the nickel electroforming process on the PMMA microlens arrays fabricated by the modified LIGA process. For the replication of microlens arrays having various diameters with different foci on the same substrate, both hot embossing and microinjection molding processes have been successfully utilized with the fabricated mold insert. Replicated microlenses showed very good surface roughness with the order of 1 nm. The focal lengths of the injection molded microlenses were successfully estimated theoretically and also measured experimentally.

A study of Pickup Lens manufacturing in diamond turing machine (초정밀가공기를 이용한 광 저장용 렌즈의 절삭특성)

  • 김건희;홍권희;김효식;박지영;박원규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.891-894
    • /
    • 1997
  • The asphericals lenses are used as objective lens of optical pickup. To examine the design factor the sample product is made before manufacturing of injection mould of lens. The optimum cutting condition of PMMA lens sample with ultra precision SPDT, he main spindle sped, the depth of cut, the feedrate are found. The demanded surface roughness 10nm Ra, aspherical form error 0.5${\mu}{\textrm}{m}$ P-V for aspherical lens of optical data storage device are satisfied.

  • PDF

Fabrication of micro lens array using micro-compression molding (미세압축성형을 통한 플라스틱 미세렌즈의 성형)

  • Moon, Su-Dong;Kang, Shin-Il;Yee, Young-Joo;Bu, Jong-Uk
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.743-746
    • /
    • 2000
  • Plastic microlenses play an important role in reducing the size, weight, and the cost of the systems in the fields of optical data storage and optical communication. In the present study, plastic microlens arrays were fabricated using micro-compression molding process. The design and fabrication procedures for mold insert were simplified by using silicon instead of metal. A simple but effective micro compression molding process, which uses polymer powder, were developed for microlens fabrication. The governing process parameters were temperature and pressure histories and the micromolding process was controlled such that the various defects developing during molding process were minimized. The radius and magnification ratio of the fabricated microlens were $125{\mu}m$ and over 3.0, respectively.

  • PDF

Fabrication of Micro Lens Array Using Micro-Compression Molding (미세압축성형을 통한 플라스틱 미세렌즈의 성형)

  • Gang, Sin-Il;Mun, Su-Dong;Lee, Yeong-Ju;Bu, Jong-Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1242-1245
    • /
    • 2001
  • Plastic microlenses play an important role in reducing the size, weight, and the cost of the systems in the fields of optical data storage and optical communication. In the present study, plastic microlens arrays were fabricated using micro-compression molding process. The design and fabrication procedures for mold insert were simplified by using silicon instead of metal. A simple but effective micro compression molding process, which uses polymer powder, were developed for microlens fabrication. The governing process parameters were temperature and pressure histories and the micromolding process was controlled such that the various defects developing during molding process were minimized. The radius and magnification ratio of the fabricated microlens were 125$\mu\textrm{m}$ and over 3.0, respectively.

UV Blocking Coatings by Combination of Organic-inorganic Hybrid materials and UV absorbers (유-무기 하이브리드 재료와 자외선 흡수제의 배합에 의한 자외선 차단 코팅)

  • Yu, Dong-Sik;Lee, Ji-Ho;Do, Young-Woong;Park, Seong-Ae;Ha, Jin-Wook
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.11a
    • /
    • pp.313-316
    • /
    • 2006
  • 눈은 자외선과 가시광선에 노출되어 있다. 눈은 자외선 노출에 해로우므로 모든 자외선으로부터 눈을 보호해야 한다. 본 연구에서는 자외선 차단을 위해 투명 플라스틱에 유-무기 하이브리드 재료와 자외선 흡수제의 배합에 의한 자외선 차단 코팅하였고, PMMA, CR 39 및 PC기재에 적용하여 자외선 차단 효과를 조사하였다. 자외선 흡수제의 양이 증가할수록 자외선의 투과도는 낮았다. PMMA의 경우 자외선 투과도를 현저히 감소시켰으며 CR 39에서도 자외선 차단 효과가 있는 것으로 나타났다. 한편, PC자체에서는 자외선 차단효과가 있는 것으로 평가되었다. CR 39 렌즈의 부착력, 내약품성, 내온수성은 우수하였고, 연필 경도의 경우 4H였으며 내마모성은 좋지 않았다.

  • PDF

Modeling and Replication of Microlens Arrays Fabricated by a Modified LIGA Process (변형 LIGA 공정을 통해 제작된 마이크로 렌즈 어레이의 모델링 및 성형)

  • Kim D. S.;Lee H. S.;Lee B. K.;Yang S. S.;Lee S. S.;Kwon T. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.23-28
    • /
    • 2005
  • Microlens arrays were fabricated using a modified LIGA process based on the exposure of a PMMA (Polymethylmethacrylate) sheet to deep x-rays and subsequent thermal treatment. A successful modeling and analyses for microlens formation were presented according to the experimental procedure. A nickel mold insert was fabricated by the nickel electroforming process on the PMMA microlens arrays fabricated by the modified LIGA process. For the replication of microlens arrays having various diameters with different foci on the same substrate, the hot embossing and the microinjection molding processes have been successfully utilized with the fabricated mold insert. Fabricated microlenses showed good surface roughness than the mold insert. The focal lengths of the injection molded microlenses were successfully measured experimentally and also estimated theoretically.

  • PDF

A Study on the Manufacturing Characteristics for Micro Spherical Lens Mold of Soft Materials (연질재료의 마이크로 구형렌즈금형 가공특성에 관한 연구)

  • 홍성민;이동주;제태진;최두선;이응숙
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1466-1469
    • /
    • 2004
  • Micro spherical lens mold processing method based on mechanical one completes a spherical shape by setting a diamond tool of hundreds $\mu$m radius on spins with high speed and then using Z-axis vertical feeding motion like the fabrication of micro drilling. In this method, we can see unprocessed parts shaped like cylinder and cone and check increasing chatter marks and burrs by setting errors of the central axis of rotation on the edge of the tool. That is why this method doesn't suit for the optical lens mold. In this paper presents unprocessed parts are disappeared and chatter marks and burrs are decreased from centre of the lens after using Run-out measuring and setting system on run-out occurred from setting tool. Also the fabrication characteristics of 6:4 Brass, A1601, PMMA are compared and analyzed, establishing the optimum machining condition on each material.

  • PDF

Microlens Fabrication by Using Excimer Laser (엑사이머 레이저를 이용한 마이크로렌즈 제작)

  • 김철세;김재도;윤경구
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.33-39
    • /
    • 2003
  • A new microlens fabrication technique, the excimer laser lithography is developed. This bases on the pulsed laser irradiation and the transfer of a chromium-on-quartz reticle on to the polymer surface with a proper projection optics system. An excimer laser lithography system with 1/4 and 1/20 demagnification ratios was constructed first, and the photoablation characteristics of the PMMA and Polyimide were experimentally examined using this system. For two different shapes of microlenses, a spherical lens and a cylindrical lens, fabrication techniques were investigated. One for the spherical lens is a combination of the mask pattern projection and fraction effect. The other for the cylindrical lens is a combination of the mask pattern projection and the relative movement of a specimen. The result shows that various shapes of micro optical components can be easily fabricated by the excimer laser lithography.

Fabrication of Solution-Based Cylindrical Microlens with High Aspect Ratio (고종횡비를 갖는 용액기반 원통형 마이크로렌즈 제조)

  • Jeon, Kyungjun;Lee, Jinyoung;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.70-76
    • /
    • 2021
  • A cylindrical microlens (CML) has been widely used as an optical element for organic light-emitting diodes (OLEDs), light diffusers, image sensors, 3D imaging, etc. To fabricate high-performance optoelectronic devices, the CML with high aspect ratio is demanded. In this work, we report on facile solution-based processes (i.e., slot-die and needle coatings) to fabricate the CML using poly(methyl methacrylate) (PMMA). It is found that compared with needle coating, slot-die coating provides the CML with lower aspect ratio due to the wide spread of solution along the hydrophilic head lip. Although needle coating provides the CML with high aspect ratio, it requires a high precision needle array module. To demonstrate that the aspect ratio of CML can be enhanced using slot-die coating, we have varied the molecular weight of PMMA. We can achieve the CML with higher aspect ratio using PMMA with lower molecular weight at a fixed viscosity because of the higher concentration of PMMA solute in the solution. We have also shown that the aspect ratio of CML can be further boosted by coating it repeatedly. With this scheme, we have fabricated the CML with the width of 252 ㎛ and the thickness of 5.95 ㎛ (aspect ratio=0.024). To visualize its light diffusion property, we have irradiated a laser beam to the CML and observed that the laser beam spreads widely in the vertical direction of the CML.

Analysis of Polishing Mechanism and Characteristics of Aspherical Lens with MR Polishing (MR Polishing을 이용한 비구면 렌즈의 연마 메커니즘 및 연마 특성 분석)

  • Lee, Jung-Won;Cho, Myeong-Woo;Ha, Seok-Jae;Hong, Kwang-Pyo;Cho, Yong-Kyu;Lee, In-Cheol;Kim, Byung-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.36-42
    • /
    • 2015
  • The aspherical lens was designed to be able to array a focal point. For this reason, it has very curved surface. The aspherical lens is fabricated by injection molding or diamond turning machine. With the aspherical lens, tool marks and surface roughness affect the optical characteristics, such as transmissivity. However, it is difficult to polish free form surface shapes uniformly with conventional methods. Therefore, in this paper, the ultra-precision polishing method with MR fluid was used to polish an aspherical lens with 4-axis position control systems. A Tool path and polishing mechanism were developed to polish the aspherical lens shape. An MR polishing experiment was performed using a generated tool path with a PMMA aspherical lens after the turning process. As a result, surface roughness was improved from $R_a=40.99nm$, $R_{max}=357.1nm$ to $R_a=4.54nm$, $R_{max}=35.72nm$. Finally, the MR polishing system can be applied to the finishing process of fabrication of the aspherical lens.