• 제목/요약/키워드: PM10 concentration

검색결과 3,322건 처리시간 0.028초

서울시 버스터미널의 이산화질소 및 아황산가스 농도 (Concentration of $NO_2$ and $SO_{2}$ of Bus Terminals in Seoul)

  • 손부순;장봉기;김영규
    • 환경위생공학
    • /
    • 제12권3호
    • /
    • pp.51-59
    • /
    • 1997
  • In this study, we researched the concentration of nitrogen dioxide($NO_{2}$) and sulfur dioxide($SO_{2}$) of indoor(waiting room) and outdoor(place of getting on the bus) at the bus terminals (Kang-Nam, Dong-Seoul and Nam-Bu) in Seoul to recognize the degree of pollution by exhaust gas of the diesel engine vehicles, and examine the factor that might affect air pollution of terminals. The concentration of $NO_{2}$ and $SO_{2}$ were measured in winter and summer, and the results of the analysis are as follows : The mean concentration of $NO_{2}$ was $57.49{\pm}21.86$ ppb and the concentration of outdoor with $64.10{\pm}27.69$ ppb was significantly higher than the indoor with $50.89{\pm}10.92$ ppb (p<0.05), and the highest with $73.54{\pm}25.54$ ppb at Kang-Nam terminal (p<0.01). The mean concentration of $NO_{2}$ was $62.80{\pm}24.74$ ppb in winter and $52.19{\pm}17.50$ ppb in summer, and had a not statistical difference. The mean concentration of $SO_{2}$ was $31.71{\pm}8.73$ ppb and the concentration of outdoor with $31.04{\pm}8.89$ ppb was similar to the indoor $32.29{\pm}8.70$ ppb, and the highest with $32.57{\pm}9.01$ ppb at Dong-Seoul terminal (p<0.05). The mean concentration of $SO_{2}$ in winter with $39.67{\pm}4.10$ ppb was significantly higher than in summer with $23.76{\pm}2.61$ ppb (p<0.01). The concentration of outdoor $NO_{2}$ at Kang-Nam terminal was 104, 84 ppb in winter and 81.20 ppb in summer, and had a statistical difference compared with the concentration of indoor $NO_{2}$ at Dong-Seoul and Nam-Bu terminals. The concentration of indoor $NO_{2}$ and $SO_{2}$ were higher than that of outdoor at Kang-Nam and Dong-Seoul terminals, but on the contrary, lower than that of outdoor at Nam-Bu terminal. The concentration of $NO_{2}$ and $SO_{2}$ at Nam-Bu terminal were lower than those at Kang-Nam and Dong-Seoul terminals. While the concentration of $SO_{2}$ show the large difference between winter and summer, that of $NO_{2}$ dose not.

  • PDF

서울시 토지이용과 교통량에 따른 미세먼지의 공간분포 (Spatial distribution of particulate matters in comparison with land-use and traffic volume in Seoul, Republic of Korea)

  • 정종철;이상훈
    • 지적과 국토정보
    • /
    • 제48권1호
    • /
    • pp.123-138
    • /
    • 2018
  • 서울시의 대기오염을 지속적으로 모니터링하기 위해, 그동안 환경부는 운영하고 있는 대기오염 측정망을 지속적으로 발전시켜왔다. 측정되는 대기오염 물질 중 미세먼지는 인체에 상당한 영향을 미치는데, 우리나라의 오염도는 OECD 국가 중에서도 두 번째로 높은 편이다. 따라서 본 연구에서는 측정된 미세먼지 농도 자료를 이용하여 서울시의 미세먼지 분포도를 PM10과 PM2.5에 대해 작성하고, 미세먼지 농도의 분포에 영향을 미칠 것으로 예상되는 공간적인 요인들과의 관계를 조사하였다. 반경 500m의 원을 포함하는 헥사곤을 기준단위로 하여 서울 전역을 구획화하고 보간법 중 거리반비례기법을 이용하여 미세먼지 농도분포도를 작성하였다. 출, 퇴근 시간대의 미세먼지 농도분포를 지역별로 분석하고, 토지이용도 및 교통량과의 관계를 분석하였다. 분석결과, PM10과 PM2.5의 농도분포는 지역별, 시간대별로 각기 다른 패턴을 나타내었고, 토지이용형태 측면에서는 상업지역 및 교통지역의 면적이 미세먼지 농도분포와 높은 관련성을 보였으며, 녹지의 유무도 농도의 분포 변화에 관계가 있는 것으로 판단되었다. 추후 세부적인 토지이용도 및 녹지분포도 등을 통하여 상관관계를 분석하면 미세먼지의 농도에 영향을 미치는 지역 수준에서의 공간요소를 밝히는데 도움이 될 것으로 기대된다.

서울.아산지역 호흡성먼지의 금속함량에 관한 연구 (Comparison of Metal Contents in Respirable Particulate Mass by Particle Size and Season in Seoul and Asan City)

  • 최윤나;전용택;장봉기;양원호;염윤기;손부순
    • 환경위생공학
    • /
    • 제23권1호
    • /
    • pp.33-48
    • /
    • 2008
  • The purpose of this study was to characterize background mass concentration of $PM_{10},\;PM_{2.5}$ and metallic composition from June 2004 to June 2005 in comparison with Seoul and Asan city. The results were as follows: 1. Annual mean of $PM_{10}$ concentrations in Seoul and Asan were $56.95({\pm}25.63){\mu}g/m^3,\;57.02({\pm}27.22){\mu}g/m^3$ respectly. 2. Annual mean of $PM_{2.5}$ concentrations in Seoul and Asan were $46.97({\pm}40.36){\mu}g/m^3,\;42.16({\pm}21.79){\mu}g/m^3$ respectly. 3. The average $PM_{2.5}/PM_{10}$ ratio was 0.82 in Seoul and 0.74 in Asan city. 4. The concentration of $PM_{10},\;PM_{2.5}$ were the highest in spring and the lowest in summer. Asan was higher than Seoul in spring and summer. 5. The results showed that average $PM_{10}$ composition order as Si>Fe>Pb>Zn>Mn in Seoul and Si>Fe>Zn>Pb>Mn in Asan. The concentration of metals in $PM_{10}$ of Seoul that Cr, Cu, Fe, Mn were high in spring and Zn was low in Fall. Fe, Mn were high in spring of Asan. 6. The results showed that average $PM_{2.5}$ composition order as Si>Pb>Fe>Zn>Mn in Seoul and Si>Fe>Pb>Zn>Cr in Asan. The concentration of metals in $PM_{2.5}$ of Seoul that Cr was high in spring. 7. The result showed that relation between Cr and Cu, Cu and Fe, Fe and Mn, Mn and Zn, Zn and Si in Seoul, Cr and Zn, Cu and Pb, Zn and Pb, Pb and Mn in Asan. The result showed that $PM_{10}$ concentration exceeding $50{\mu}g/m^3$(US-EPA Standard) and $PM_{2.5}$ concentration exceeding $15{\mu}g/m^3$(US-EPA Standard). In urban area, the monitoring of $PM_{2.5}$ permits the anthropogenic sources and the interference of natural sources with respect to $PM_{10}$ measurements.

봄·여름철 대기 중 미세먼지와 빗물 수질 상관성 분석 (Analysis of Correlation between Particulate Matter in the Atmosphere and Rainwater Quality During Spring and Summer of 2020)

  • 박혜민;김태용;허준용;양민준
    • 대한원격탐사학회지
    • /
    • 제37권6_2호
    • /
    • pp.1859-1867
    • /
    • 2021
  • 본 연구는 부산지역의 봄철과 여름철 대기 중 미세먼지(particulate matter, PM) 농도 및 빗물 수질을 정량화하고 다변량 통계분석을 이용하여 계절(봄, 여름) 특성에 따른 대기 중 PM 농도가 빗물 수질에 미치는 영향을 평가하였다. 연구기간(2020년 3월-8월)동안 기상청 AWS (automatic weather system)에서 측정된 대기 중 PM 농도와 총 68번의 강우 특성 자료를 이용하였으며, 총 68번의 강우 이벤트 중 13회 강우를 대상으로 부산 부경대학교 캠퍼스에 집수장치를 설치하여 총 216개의 빗물 샘플을 수집하였다. 빗물의 pH와 전기전도도(electrical conductivity, EC)는 실시간 측정되었으며, 빗물 내 양이온(Na+, Mg2+, K+, Ca2+, and NH4+) 및 음이온(Cl-, NO3-, and SO42-) 농도를 분석하였다. 또한, 자체 제작한 미세먼지 센서를 이용하여 강우 전후로 대기 중 PM10 농도를 측정하였으며, 측정된 데이터를 바탕으로 주성분 분석(principal component analysis, PCA)과 피어슨 상관분석(Person correlation analysis)을 실시하여 대기 중 PM10 농도와 빗물 수질 간 상관관계를 규명하였다. 연구결과, 부산지역의 일평균 대기 중 PM 농도 및 강우 특성은 계절적 차이가 존재하였으며, 대기 중 PM10 농도와 빗물 수질간 상관성 또한 상이하게 나타났다. 봄철의 경우, 일평균 대기 중 PM10 (34.11 ㎍/m3) 및 PM2.5 (19.23 ㎍/m3)의 평균 농도는 상대적으로 높게 나타났고 일평균 누적 강우량 및 강우 강도는 상대적으로 낮게 나타났다. 또한, 대기 중 PM10 농도는 빗물 수질과 유의미한 상관관계를 보였으며 대기 중 PM10 농도는 pH (r = -0.84)는 감소시키고 EC (r = 0.95) 및 수용성 음이온(r = 0.99) 농도는 증가시키는 요인으로 작용하였다. 여름철의 경우에는 일 평균 PM10 (27.79 ㎍/m3) 및 PM2.5 (17.41 ㎍/m3)의 평균 농도가 상대적으로 낮은 농도 분포를 보였으며, 최대 일 평균 강우 강도는 81.6 mm/h로 오랜 시간 많은 양의 비를 기록하였다. 상대적으로 낮은 대기 중 PM 농도와 높은 강우 강도로 인해 대기 중 PM10 농도가 빗물 수질에 미치는 영향을 확인할 수 없었다.

수도권 대기 미세먼지 1999-2008년 추이 분석 (Analysis of the trend of atmospheric PM10 concentration over the Seoul Metropolitan Area between 1999 and 2008)

  • 김용표
    • 환경영향평가
    • /
    • 제19권1호
    • /
    • pp.59-74
    • /
    • 2010
  • The trend of the PM10 concentrations in the Seoul Metropolitan Area (SMA) is reviewed and relative contributions of major contributors (paved road emissions and long-range transport from outside the SMA) are discussed. It was shown that the PM10 concentrations in the SMA have generally decreased except Incheon between 1999 and 2005. Further, it was identified that the difference of the PM10 mass concentration between the roadside stations and urban ambient stations has decreased between 2004 and 2008. Based on the emission estimates, it was suggested that the reduction of resuspension of aerosols on the road is the major reason for that. Based on the modeling results, it was identified that outside effects be about 30% of the ambient PM10 concentration in the SMA. Further research and policy issues to identify major sources of PM10 in the SMA are discussed.

광학적 입자계수기를 이용한 2004년 황사기간 인천지역 에어로졸 특성 (Characteristics of Incheon Aerosol during Asian Dust Period in 2004 using Optical Particle Counter (OPC))

  • 정창훈;조용성;이종태
    • 한국환경과학회지
    • /
    • 제14권6호
    • /
    • pp.565-575
    • /
    • 2005
  • The characteristics for the aerosol number distribution was studied during spring, 2004 in Incheon. Optical Particle Counter (OPC, HIAC/ROYCO 5230) was used in order to measure the number concentration of aerosol in the range of $0.3\~25{\mu}m.$. The obtained results were compared with $PM_{2.5}\;and\;PM_{10}$ data during Asian dust events. The results show that the size resolved aerosol number concentration from OPC measurement has a similar tendency with $PM_{10}\;and\;PM_{2.5}$ mass concentration. During Asian dust periods, the number concentrations in large particle $(CH5\~CH8)$ increase more than small particles which diameter is less than $2.23{\mu}m(CH5)$ and the same results were shown when $PM_{10}$ was compared with $PM_{2.5}$ data compared with non-dust days, Consequently, this study shows that size resolved aerosol number concentration from OPC measurement can be used as a useful tool in comparison of mass concentration data.

기상인자가 미세먼지 농도에 미치는 영향 (The Influence of Meteorological Factors on PM10 Concentration in Incheon)

  • 신문기;이충대;하현섭;최춘석;김용희
    • 한국대기환경학회지
    • /
    • 제23권3호
    • /
    • pp.322-331
    • /
    • 2007
  • In this study, we have analyzed $PM_{10}$ concentration measured at Incheon Regional Air Monitoring Network (10 stations) and meteorological data at Incheon Weather Station to investigate factors (i.e. wind direction, wind speed, relative humidity, major meteorological phenomenon, and sea-land breezes existence) influencing $PM_{10}$ concentration in Incheon during 2005. Statistical differences among meteorological factors were assessed by Kruskal-Wallis test or Mann-Whitney U test. The main conditions causing high $PM_{10}$ concentration are summarized below; 1. When westerly wind prevailed (however, $PM_{10}$ decreased when winds were blowing from the east or north). 2. When the winds were calm, owing to accumulation of nearby emissions under stagnant conditions, or when the wind speed is in excess of 6 m/s, which shows the effect of fugitive dust produced by wind erosion. 3. Under the condition of high relative humidity and poor diffusion based on meteorological phenomenon such as fog, mist, and haze. 4. When the Sea-Land breezes existed, which occurred 70 days in Incheon during 2005 and contributed significantly to high $PM_{10}$ concentration in the coastal urban area. In conclusion, we have found that the meteorological factors have influence on $PM_{10}$ concentration in Incheon.

노천소각에서 배출되는 먼지 배출계수 산정에 관한 연구 (Estimation of Particulate Matter Emission Factors from Open Burning)

  • 정노을;조명란;허선화;김형천;박정민;이대균;홍지형;이석조;이영재
    • 한국대기환경학회지
    • /
    • 제28권3호
    • /
    • pp.348-356
    • /
    • 2012
  • It is very important to investigate air pollutants and emissions emitted from open burning in order to control nonpoint sources effectively. In this study, we utilized incineration simulator proposed by U.S. EPA and investigated concentrations of TSP, PM10, PM2.5 from woods and household wastes burning to calculate emission factors and build emission inventories. The results of experiment with 15 kg of woods and 3 kg of household wastes using the incineration simulator were as follows: in case of woods burning, TSP concentration was $66.4mg/m^3$, PM10 concentration was $28.4mg/m^3$, PM2.5 concentration was $17.9mg/m^3$, respectively; in case of household wastes burning, TSP concentration was $118.4mg/m^3$, PM10 concentration was $66.8mg/m^3$, PM2.5 concentration was $55.2mg/m^3$, respectively. Concentrations from household burning, as stated above, were higher than those from woods burning. Emission factors (EFs) for woods and household wastes burning were calculated as 2.45 and 6.75 g/kg for TSP, 0.86 and 5.45 g/kg for PM10, 0.78 and 4.81 g/kg for PM2.5, respectively. EFs of TSP, PM10, PM2.5 calculated from household wastes burning were higher than those of woods burning. When we added PM emissions from woods burning and household wastes burning to Korean National Emission Inventory named as Clean Air Policy Support System (CAPSS), CAPSS annual emissions of TSP, PM10, PM2.5 were increased by 0.08~0.26% (An increase rate for TSP, PM10, PM2.5 were 0.08~0.10%, 0.16~0.20% and 0.18~0.26%, respectively). Note that we assumed that the 1% of household wastes is emitted by open burning.

지하철역사내 측정위치별 PM-10 및 중금속 농도특성에 관한 연구 (A study of PM-10 and Heavy Metal characteristics in the air at the each site of a subway station.)

  • 장정욱;조장제;최우건;박덕신;정우성;김태오
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(III)
    • /
    • pp.389-394
    • /
    • 2003
  • Subway has been used one of major public transportations because of overpopulation and heavy traffic problems in the metropolitan areas. So, the air pollution has been serious. In this study, continuous date of PM-10 (particles with aerodynamic diameter < $10{\mu}m$) and heavy metal concentration measurements for winter, spring and summer. These measurements have been carried out in the outdoor, concourse, platform, tunnel. The study results showed that the average seasonally concentration of PM-10 particles were $141.57{\mu}g/m^3$ in winter. $129.34{\mu}g/m^3$ in spring and $122.73{\mu}g/m^3$. The average concentration of PM-l0 particles at indoor higher than outdoor. The concentration of Fe, Cu, showed the largest peak concentrations during the respective season.

  • PDF

On-line Measurement of the Surface Area Concentration of Aerosols in Yokohama, Japan, using the Diffusion Charging Method

  • Hatoya, Kazuki;Okuda, Tomoaki;Funato, Koji;Inoue, Kozo
    • Asian Journal of Atmospheric Environment
    • /
    • 제10권1호
    • /
    • pp.1-12
    • /
    • 2016
  • Numerous researchers have proposed that surface area is a more appropriate indicator than mass for evaluating pulmonary inflammatory responses caused by exposure to fine and ultrafine particles. In this study, measurements of surface area concentrations of aerosols were conducted in Yokohama, Japan, using the diffusion charging method. $PM_{2.5}$ mass concentration and black carbon concentration in $PM_{2.5}$ were also measured. The 24-hour continuous measurement campaigns were conducted 39 times from March to November, 2014. The surface area concentration was more closely correlated with the black carbon concentration than with the $PM_{2.5}$ mass concentration. It is considered that the abundance of black carbon particles significantly affects the surface area concentration of $PM_{2.5}$. The strength of the correlation between the surface area and black carbon concentrations varied considerably among the measurement campaigns. A relatively weaker afternoon correlation was observed compared with the other time zones (morning, evening, and night). We consider that these phenomena are due to the transportation/formation of the particles other than black carbon that affects surface area concentration and/or the variation of the surface condition of the black carbon particles.