• Title/Summary/Keyword: PM motor drive

Search Result 96, Processing Time 0.023 seconds

A Simple and Robust Digital Current Control for a PM Synchronous Motor under the Parameter Variations

  • Kim, Kyeong-Hwa;Baik, In-Cheol;Young, Myung-Joong
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.174-183
    • /
    • 1998
  • A simple and robust digital current control technique for a permanent magnet (PM) synchronous motor under the parameter variations is presented. Among the various current control schemes for an inverter-fed PM synchronous motor drive, the predictive control is known to give a superior performance. This scheme, however, requires the full knowledge of machine parameters and operating conditions, and cannot give a satisfactory response under the parameter mismatch. To overcome such a limitation, the disturbances caused by the parameter variations will be estimated by using a disturbance observer theory and used for the computation of the reference voltages by a feedforward control. Thus, the steady-state control performance can be significantly improved with a relatively simple control algorithm, while retaining the good characteristics of the predictive control. The proposed control scheme is implemented on a PM synchronous motor using the software of DSP TMS320C30 and the effectiveness is verified through the comparative simulations and experiments.

  • PDF

Sensorless Sine-Wave Controller IC for PM Brushless Motor Employing Automatic Lead-Angle Compensation

  • Kim, Minki;Heo, Sewan;Oh, Jimin;Suk, Jung-Hee;Yang, Yil Suk;Park, Ki-Tae;Kim, Jinsung
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1165-1175
    • /
    • 2015
  • This paper presents an advanced sensorless permanent magnet (PM) brushless motor controller integrated circuit (IC) employing an automatic lead-angle compensator. The proposed IC is composed of not only a sensorless sine-wave motor controller but also an isolated gate-driver and current self-sensing circuit. The fabricated IC operates in sensorless mode using a position estimator based on a sliding mode observer and an open-loop start-up. For high efficiency PM brushless motor driving, an automatic lead-angle control algorithm is employed, which improves the efficiency of a PM brushless motor system by tracking the minimum copper loss under various load and speed conditions. The fabricated IC is evaluated experimentally using a commercial 200 W PM brushless motor and power switches. The proposed IC is successfully operated without any additional sensors, and the proposed algorithm maintains the minimum current and maximum system efficiency under $0N{\cdot}m$ to $0.8N{\cdot}m$ load conditions. The proposed IC is a feasible sensorless speed controller for various applications with a wide range of load and speed conditions.

Low Cost Speed Control System of PM Brushless DC Motor Using 2 Hall-ICs (2Hall-ICs를 이용한 저가형 PM Brushless DC Motor 속도 제어)

  • 윤용호;우무선;김덕규;원충연;최유영
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.311-318
    • /
    • 2004
  • Generally, PM BLDC drive system is necessary that the three Hall-ICs evenly be distributed around the stator circumference and encoder installed in case of the 3 phase motor. The Hall-ICs are set up in this motor to detect the main flux from the rotor. So the output signal from Hall-ICs is used to drive a power transistor to control the stator winding current. Instead of using three Hall-ICs and encoder, this paper uses only two Hall-ICs for the permanent magnet rotor position and for the speed feedback signals, and uses a micro controller of 16-bit type(80C196KC) with the 3 phase PM BLDC whose six stator and two rotor designed. Two Hall-IC Hc and $H_B$ are placed on the endplate at 120 degree phase difference. With these elements, we estimate information of the other phase in sequence through a rotating rotor.

Investigation on Direct Driven IPMSM for Next Generation Locomotive (차세대 전동차용 직접 구동용 매입형 영구자석 동기전동기의 특성 고찰)

  • Kim, Min-Seok;Park, Ji-Seong;Kim, Dae-Kwang;Kim, Jung-Chul;Jung, Sang-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.4
    • /
    • pp.398-403
    • /
    • 2008
  • The propulsion for locomotive application has changed from the DC motor system to the induction motor system. Although the induction motor system has almost reached the stage of maturity, this system also needs to be changed to the PM motor system for the direct drive without using reduction gear. Thus, the IPMSM (Interior buried Permanent Magnet Synchronous Motor) has been adopted to meet the locomotive driving specification. Where the wheel is directly dirven by the traction motor. In this paper, the investigation on IPMSM satisfying driving specifications for the direct drive has been performed using the advanced FEM.

MTPA control algorithm for an IPMSM drive reflecting the PM flux linkage variation (영구자석 쇄교 자속 변화를 고려한 매입형 영구자석 동기전동기의 MTPA 제어 알고리즘 개발)

  • Sungmin, Choi;Seong-ho, Ryu;Jae Suk, Lee
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.653-658
    • /
    • 2022
  • This paper presents a Maximum Torque per Ampere (MTPA) control algorithm for an interior permanent magnet synchronous motor (IPMSM) drive considering the permanent magnet (PM) flux linkage variations due to PM temperature variation. PM flux linkage are estimated in real time via a Gopinath style stator flux linkage observer and a torque error correction factor is calculated from the estimated PM flux linkage. A 2-dimensional (2D) MTPA look-up table (LUT) is developed to achieve the MTPA trajectory reflecting PM flux linkage variation for compensating torque error occurred by parameter variation. The proposed IPMSM control algorithm is verified through simulations.

Modeling of Speed Controller for PM Linear Synchronous Motor (직선형 영구자석 동기 전동기의 속도 제어기 설계)

  • Jang, Seok-Myeong;You, Dae-Joon;Jang, Won-Bum;Park, Ji-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.71-73
    • /
    • 2004
  • This paper presents drive analysis of slotless air-cored PM linear synchronous motor using two-dimensional analytical method. In order to analyze dynamic characteristic, back-EMF and linkage flux are calculated by Permanent Magnet Field and also inductance are given by slotless winding coil. PMLSM drive simulation is performed by PI control system.

  • PDF

PMSM Propulsion Control System Development and Test for Rolling Stock (철도 차량용 PMSM 추진제어시스템 개발 및 시험)

  • Ro, Ae-Sook;Kim, Tae-Yun;Chung, Eun-Sung;Han, Jeong-Soo;Lee, Jang-Moo
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1845-1850
    • /
    • 2011
  • Permanent Magnet Synchronous Motor(PM motor) of Advanced EMU is the direct drive morot(DDM) without using reduction gear and Interior buried Permanent Magnet Synchronous Motor(IPMSM). Propulsion system for IPMSM control is composed 1C1M. 1C1M is good for each motor control and anti slip/slide. Propulsion control system have completed running test on field and reliability test is in progress.

  • PDF

Suppression Method for Torque Ripple of PM Synchronous Motor

  • Yonezawa Hiroyuki;Taniguchi Katsunori;Lee Hyun Woo
    • Journal of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.264-271
    • /
    • 2005
  • A new modified trapezoidal modulating signal for a pulse width modulation (PWM) inverter suitable for a permanent magnet synchronous motor (PMSM) drive is proposed in this paper. A new modulating signal for the PMSM drive is determined by the characteristic torque ripple of the motor with various electro-motive force (EMF). The proposed modulating signal is able to decrease the torque ripple even if the motor has sinusoidal EMF or non-sinusoidal EMF. By using the proposed modulating signal, the system reduced the torque ripple as well as achieved the effective utilization of the DC supply voltage for the inverter. Many improvements are accomplished by the PWM strategy adapting the modified trapezoidal modulating signal without a change in hardware.

Speed Control of Three Phase Slotless PM BLDC Motor Using Single Sensor (Single Sensor를 이용한 3상 Slotless PM BLDC 전동기의 속도제어)

  • Lee S. J.;Yoon Y. H.;Woo M. S.;Won C. Y.;Choe Y. Y.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.33-37
    • /
    • 2004
  • Slotless Permanent magnet Brushless DC Motor(PM BLDC) with the characteristics of high speed and high power density has been more widely used in industrial and automatic machine. Generally, PM BLDC meter is necessary that the three Hall-ICs evenly be distributed around the stator circumference in case of the 3 phase motor. The Hall-ICs are set up in this motor to detect the main flux from the rotor. therefore the output signal from Hall-ICs is used to drive a power transistor to control the stator winding current. However, instead of using three Hall-ICs, if only we used one Hall-IC, we estimate information of the others phase in sequence through a revolving rotor. This paper identified the characteristics and performance by using one Hall-IC for the 3 phase PM BLDC whose six stator and two rotor designed.

  • PDF

Sensorless Control of PM Synchronous Motor Using Adaptive Observer (적응 관측기를 이용한 영구자석 동기전동기의 센서리스 제어)

  • 홍찬호;윤명중
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.60-63
    • /
    • 1997
  • A new approach to the position sensor elimination of PM synchronous motor drives is presented in this study. Using the position sensing characteristics of PMSM itself, the actual rotor position as well as the machine speed can be estimated by adaptive flux observer and used as the feedback signal for the vector controlled PMSM drive. The adaptive speed estimation is achieved by model reference adaptive technique. The adaptive laws are derived by the Popov's hyperstability theory and the positivity concept. In order to verify the effectiveness of the proposed scheme, computer simulations are carried out for the actual parameters of a PM synchronous motor and the results well demonstrate that the proposed scheme provides a good estimation value of the rotor speed without mechanical sensor. It is also shown that the actual rotor position as well as the machine speed can be achieved under the variation of the magnet flux linkage. Since the flux linkages are estimated by the adaptive flux observer and used for the identification of the rotor speed, robust estimation of the rotor speed can be performed.

  • PDF