Background: Exposure to fine particulate matter (PM2.5) and ozone (O3) poses potential health risks. The Indoor-to-Outdoor ratio (I/O ratio) is a valuable tool for understanding indoor air quality and identifying potential indoor sources. Objectives: The objective of this study was to determine I/O ratios of PM2.5 and O3 by different microenvironments and seasons in Korea. Methods: From December 2021 to November 2023, indoor concentrations of PM2.5 and O3 were monitored every hour in 13 microenvironments (residential indoor, office, school, restaurant, pub, café, study café, private educational institute, PC room, billiard room, screen golf center, supermarket, and shopping mall) in Korea. Hourly outdoor concentrations of PM2.5 and O3 were obtained from local air quality monitoring stations, provided by airkorea.or.kr. The hourly I/O ratio was calculated by the indoor and outdoor concentrations. Results: At the pub, billiard room, and PC room, the median PM2.5 I/O ratio exceeded 1 in all seasons, except in spring at the PC room (0.9), suggesting indoor smoking as a potential cause. The median PM2.5 I/O ratio at the restaurant exceeded 1 in winter, autumn, and summer, except for spring (0.9), indicating significant PM2.5 emission sources in the restaurant. The median O3 I/O ratio was below 0.5 in all seasons and microenvironments. Conclusions: This study provided useful data on relationships between indoor and outdoor pollution in various microenvironments by seasons. These I/O ratios could be applied for more accurate exposure assessment to protect health of human.
Organic carbon (OC) and elemental carbon (EC) concentrations were determined for $PM_{10}$, $PM_{2.5}$ and $PM_{1.0}$ aerosols particles collected at Gosan Superstation on Jeju Island from August 2007 to September 2008. Aerosols were collected on quartz filters for 24 hours and then OC and EC were analyzed by TOR/IMPROVED method. Mean concentrations of OC and EC were $4.66\;{\mu}g/m^3$ and $1.69\;{\mu}g/m^3$ for $PM_{10}$, $3.95\;{\mu}g/m^3$ and $1.69\;{\mu}g/m^3$ for $PM_{2.5}$, and $3.16\;{\mu}g/m^3$ and $1.42\;{\mu}g/m^3$ for $PM_{1.0}$, respectively. The concentrations of OC and EC comprised 16.4% and 6.0% of $PM_{10}$, 22.9% and 9.8% of $PM_{2.5}$, and 23.0% and 10.0% of $PM_{1.0}$. OC and EC showed a clear seasonal variation with the highest in winter and the lowest in summer. The correlations between the two were also the best during the winter ($R^2$=0.87, 0.94, and 0.95 for $PM_{10}$, $PM_{2.5}$ and $PM_{1.0}$). The ratio of OC/EC exhibited the maximum (7.24) during an Asian dust event due to an increase of OC, which was possibly derived from soil. The mass fraction of both OC and EC was the highest in fall. When OC and EC concentrations were highly elevated, EC1 (the first EC fraction determined at $550^{\circ}C$) and pyrolyzed OC (POC) were dominant subcomponents in winter and OC3 (the third OC fraction determined at $450^{\circ}C$) and POC in spring.
Objectives: Excess mortality associated with long-term exposure to fine particulate matter (PM2.5) has been documented. However, research on the disease burden following short-term exposure is scarce. We investigated the cause-specific mortality burden of short-term exposure to PM2.5 by considering the potential non-linear concentration-response relationship in Korea. Methods: Daily cause-specific mortality rates and PM2.5 exposure levels from 2010 to 2019 were collected for 8 Korean cities and 9 provinces. A generalized additive mixed model was employed to estimate the non-linear relationship between PM2.5 exposure and cause-specific mortality levels. We assumed no detrimental health effects of PM2.5 concentrations below 15 ㎍/m3. Overall deaths attributable to short-term PM2.5 exposure were estimated by summing the daily numbers of excess deaths associated with ambient PM2.5 exposure. Results: Of the 2 749 704 recorded deaths, 2 453 686 (89.2%) were non-accidental, 591 267 (21.5%) were cardiovascular, and 141 066 (5.1%) were respiratory in nature. A non-linear relationship was observed between all-cause mortality and exposure to PM2.5 at lag0, whereas linear associations were evident for cause-specific mortalities. Overall, 10 814 all-cause, 7855 non-accidental, 1642 cardiovascular, and 708 respiratory deaths were attributed to short-term exposure to PM2.5. The estimated number of all-cause excess deaths due to short-term PM2.5 exposure in 2019 was 1039 (95% confidence interval, 604 to 1472). Conclusions: Our findings indicate an association between short-term PM2.5 exposure and various mortality rates (all-cause, non-accidental, cardiovascular, and respiratory) in Korea over the period from 2010 to 2019. Consequently, action plans should be developed to reduce deaths attributable to short-term exposure to PM2.5.
In this study, the contributions of emissions (foreign and domestic) and atmospheric physical and chemical processes to PM2.5 concentrations were evaluated during a high PM2.5 episode (March 24-26, 2018) observed on the Jeju Island in the spring of 2018. These analyses were performed using the community multi-scale air quality (CMAQ) modeling system using the brute-force method and integrated process rate (IPR) analysis, respectively. The contributions of domestic emissions from South Korea (41-45%) to PM2.5 on the Jeju Island were lower than those (81-89%) of long-range transport (LRT) from China. The substantial contribution of LRT was also confirmed in conjunction with the air mass trajectory analysis, indicating that the frequency of airflow from China (58-62% of all trajectories) was higher than from other regions (28-32%) (e.g., South Korea). These results imply that compared to domestic emissions, emissions from China have a stronger impact than domestic emissions on the high PM2.5 concentrations in the study area. From the IPR analysis, horizontal transport contributed substantially to PM2.5 concentrations were dominant in most of the areas of the Jeju Island during the high PM2.5 episode, while the aerosol process and vertical transport in the southern areas largely contributed to higher PM2.5 concentrations.
2020년 중국의 COVID-19 폐쇄는 한국의 풍상측에 위치한 중국의 대기오염 배출량을 감소시켰다. 몽골 북부로부터 중국 동부를 거쳐 한반도에 이르는 지역에서는 2020년 1~2월에 기온 아노말리가 양(+)으로 온난하였고, 2020년 1월에는 동서류 아노말리가 음(-)으로 정체적인 특징을 보였다. 2019년 12월~2020년 3월에 한국 중부 서쪽의 석모리와 파도리에서 중국 배출량 감소의 영향에 따라 PM10, NO2, O3 농도 변동이 나타났다. 파도리에서 PM10, O3 월평균 농도와 최근 4년의 월평균 농도의 비는 2019년 12월과 비교하여 중국의 COVID-19 폐쇄 이후인 2020년 1~3월에 각각 0.7~4.7%, 9.2~22.8%로 감소하였다. 2020년 1월 중국의 춘절 기간에는 석모리와 파도리에서 PM10, NO2, O3 농도가 최근 4년의 춘절 기간과 마찬가지로 감소하였다. 그러나 2020년 1월 평균 농도가 최근 4년 1월과 비교하여 감소한 것은 중국 춘절 전후의 기간에도 배출량이 감소하였던 것과 관련 있다. 2020년 1~3월 석모리의 PM10, NO2, O3 농도의 비(${\bar{O}_s$/M)는 각각 70.8~89.7%, 70.5~87.1%, 72.5~97.1%이었고, 파도리에서도 각각 79.6~93.5%, 67.7~84.9%, 83.7~94.6%로 추정 월평균(M)보다 월평균(${\bar{O}_s$)이 감소하였다. 2020년 1월에 몽골 북부로부터 중국 동부와 한반도에 이르는 지역의 온난화로 인한 광화학 반응으로 최근 4년과 비교하여 AOD가 높게 나타났으나 2020년 3월에는 풍상측인 중국에서 2차 에어로졸을 생성하는 전구물질 배출 감소로 최근 4년과 비교하여 낮은 AOD 분포를 보였던 것으로 분석되었다.
본 연구는 전산유체역학(computational fluid dynamics, CFD) 모델을 이용하여 도시 지역에서 수목이 PM2.5 저감에 미치는 영향을 조사하였다. 현실적인 수치 모의를 위해, 기상청에서 현업으로 운영 중인 국지예보시스템(LDAPS)이 예측한 기상 자료를 CFD 모델의 초기·경계 자료로 사용하였다. CFD 모델 성능 검증은 연구 대상지 내에 구축된 6개의 센서에서 측정한 PM2.5 농도를 이용하였다. 본 연구에서는 수목이 PM2.5 농도 분포에 미치는 영향을 분석하기 위하여, 수목이 식재 되지 않았다고 가정한 경우, 수목이 식재되어 있지만 바람에 대한 항력 효과만 존재한다고 가정한 경우, 수목의 항력 효과와 침적 효과가 모두 존재한다고 가정한 경우에 대한 수치 실험을 수행하였다. 분석대상 기간 동안 PM2.5 저감 효과가 뚜렷하게 나타난 세 가지 영역 중 군부대 내의 PM2.5 평균 농도를 비교한 결과, 수목이 식재되지 않은 경우는 12.8 ㎍ m-3, 수목의 항력 효과만 고려한 경우는 12.5 ㎍ m-3이 나타났고, 수목의 항력 효과와 침적 효과가 모두 고려한 경우는 6.8 ㎍ m-3가 나타났다. 수목에 의한 건성 침적이 PM2.5 농도를 감소시키는 효과가 있는 것으로 확인되었다.
복잡하고 광범위한 원인을 가진 대기오염물질 중 particulate matter (PM)은 입자의 크기에 따라 분류된다. 그 중 PM2.5는 그 크기가 매우 작아 사람이 흡입하면 인간의 호흡기나 심혈관에 질병을 유발할 수 있다. 이러한 위험에 대비하기 위해서는 국가 중심의 관리와 사전에 예방할 수 있는 모니터링 및 예측이 중요하다. 본 연구는 고농도 미세먼지의 발생이 잦은 서울시의 PM2.5를 local data assimilation and prediction system (LDAPS) 기상 관련 인자 15가지와 aerosol optical depth (AOD), 화학인자 4가지를 독립변수로 하여 앙상블 모델 두 가지 random forest (RF)와 extreme gradient boosting (XGB)로 예측하고자 하였다. 예측에 사용된 두 모델의 성능 평가와 인자 중요도 평가를 수행하였으며, 계절별 모델 분석도 수행하였다. 예측 정확도 결과, RF가 R2 = 0.85, XGB가 R2 = 0.91의 높은 예측 정확도를 보이며 XGB가 RF보다 PM2.5 예측에 적합한 모델임을 확인하였다. 계절별 모델 분석 결과, 봄에 농도가 높은 관측 값과 비교하여 예측 수행이 잘 되었다고 할 수 있다. 본 연구는 다양한 인자를 이용하여 서울시의 PM2.5를 예측하였고, 좋은 성능을 보이는 앙상블 기반의 PM2.5 예측 모델을 구축하였다.
As domestic meat consumption increases, the broiler production industry has been larger and denser. The concentration of particulate matter (PM) and harmful gases generated is also increasing inside livestock house. However, the current research status of PM exposed to farm workers and the health effects are in the early stage. To understand PM concentration affecting workers in the broiler house, field monitoring was conducted according to its size distributions. Concentrations of PM10, PM2.5, and TD (Total Dust) were monitored using personal air samplers with teflon filter during working and moving periods considering the ventilation systems of 6 broiler houses. The purpose of this study is to monitor the PM concentration in the experimental broiler houses operated by forced ventilation system generally used in Korea and to evaluate the regional concentrations through airflow pattern. The PM concentrations were increased from inlet to outlet vents resulting in 1,872 of TD, 1,385 of PM10, and 209 ㎍/㎥ of PM2.5, respectively. The TD and PM10 concentrations were increased when the workers and broilers were moving. Among them, the particle size that occupied the largest amount of PM was 13.75 ㎛. These results suggest that personal protection equipments are important to reduce the health effect from PM inhalation.
Background: Recently, there has been increasing worldwide concern about outdoor air pollution, especially particulate matter (PM), which has been extensively researched for its harmful effects on the respiratory system. However, sufficient research on its effects on cardiovascular diseases, such as hypertension, remains lacking. In this study, we examine the associations between PM levels and hypertension and hypothesize that higher PM concentrations are associated with elevated blood pressure. Methods: A total of 133,935 adults aged ≥ 40 years who participated in the Korean Genome and Epidemiology Study were analyzed. Multiple linear regression analyses were conducted to investigate the short- (1-14 days), medium- (1 and 3 months), and long-term (1 and 2 years) impacts of PM on blood pressure. Logistic regression analyses were conducted to evaluate the medium- and long-term effects of PM on blood pressure elevation after adjusting for sex, age, body mass index, health-related lifestyle behaviors, and geographic areas. Results: Using multiple linear regression analyses, both crude and adjusted models generated positive estimates, indicating an association with increased blood pressure, with all results being statistically significant, with the exception of PM levels over the long-term period (1 and 2 years) in non-hypertensive participants. In the logistic regression analyses on non-hypertensive participants, moderate PM10 (particulate matter with diameters < 10 ㎛) and PM2.5 (particulate matter with diameters < 2.5 ㎛) levels over the long-term period and all high PM10 and PM2.5 levels were statistically significant after adjusting for various covariates. Notably, high PM2.5 levels of the 1 year exhibited the highest odds ratio of 1.23 (95% confidence interval: 1.19-1.28) after adjustment. Conclusions: These findings suggest that both short- and long-term exposure to PM is associated with blood pressure elevation.
Background: Monitoring and control of PM2.5 are being recognized as key to address health issues attributed to PM2.5. Availability of low-cost PM2.5 sensors made it possible to introduce a number of portable PM2.5 monitors based on light scattering to the consumer market at an affordable price. Accuracy of light scatteringe-based PM2.5 monitors significantly depends on the method of calibration. Static calibration curve is used as the most popular calibration method for low-cost PM2.5 sensors particularly because of ease of application. Drawback in this approach is, however, the lack of accuracy. Methods: This study discussed the calibration of a low-cost PM2.5-monitoring device (PMD) to improve the accuracy and reliability for practical use. The proposed method is based on construction of the PM2.5 sensor network using Message Queuing Telemetry Transport (MQTT) protocol and web query of reference measurement data available at government-authorized PM monitoring station (GAMS) in the republic of Korea. Four machine learning (ML) algorithms such as support vector machine, k-nearest neighbors, random forest, and extreme gradient boosting were used as regression models to calibrate the PMD measurements of PM2.5. Performance of each ML algorithm was evaluated using stratified K-fold cross-validation, and a linear regression model was used as a reference. Results: Based on the performance of ML algorithms used, regression of the output of the PMD to PM2.5 concentrations data available from the GAMS through web query was effective. The extreme gradient boosting algorithm showed the best performance with a mean coefficient of determination (R2) of 0.78 and standard error of 5.0 ㎍/㎥, corresponding to 8% increase in R2 and 12% decrease in root mean square error in comparison with the linear regression model. Minimum 100 hours of calibration period was found required to calibrate the PMD to its full capacity. Calibration method proposed poses a limitation on the location of the PMD being in the vicinity of the GAMS. As the number of the PMD participating in the sensor network increases, however, calibrated PMDs can be used as reference devices to nearby PMDs that require calibration, forming a calibration chain through MQTT protocol. Conclusions: Calibration of a low-cost PMD, which is based on construction of PM2.5 sensor network using MQTT protocol and web query of reference measurement data available at a GAMS, significantly improves the accuracy and reliability of a PMD, thereby making practical use of the low-cost PMD possible.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.