Browse > Article
http://dx.doi.org/10.5322/JESI.2022.31.7.637

Contributions of Emissions and Atmospheric Physical and Chemical Processes to High PM2.5 Concentrations on Jeju Island During Spring 2018  

Baek, Joo-Yeol (Faculty of Earth and Marine Convergence/Earth and Marine Science Major, Jeju National University)
Song, Sang-Keun (Faculty of Earth and Marine Convergence/Earth and Marine Science Major, Jeju National University)
Han, Seung-Beom (Observation Research Department, National Institute of Meteorological Sciences)
Cho, Seong-Bin (Faculty of Earth and Marine Convergence/Earth and Marine Science Major, Jeju National University)
Publication Information
Journal of Environmental Science International / v.31, no.7, 2022 , pp. 637-652 More about this Journal
Abstract
In this study, the contributions of emissions (foreign and domestic) and atmospheric physical and chemical processes to PM2.5 concentrations were evaluated during a high PM2.5 episode (March 24-26, 2018) observed on the Jeju Island in the spring of 2018. These analyses were performed using the community multi-scale air quality (CMAQ) modeling system using the brute-force method and integrated process rate (IPR) analysis, respectively. The contributions of domestic emissions from South Korea (41-45%) to PM2.5 on the Jeju Island were lower than those (81-89%) of long-range transport (LRT) from China. The substantial contribution of LRT was also confirmed in conjunction with the air mass trajectory analysis, indicating that the frequency of airflow from China (58-62% of all trajectories) was higher than from other regions (28-32%) (e.g., South Korea). These results imply that compared to domestic emissions, emissions from China have a stronger impact than domestic emissions on the high PM2.5 concentrations in the study area. From the IPR analysis, horizontal transport contributed substantially to PM2.5 concentrations were dominant in most of the areas of the Jeju Island during the high PM2.5 episode, while the aerosol process and vertical transport in the southern areas largely contributed to higher PM2.5 concentrations.
Keywords
High $PM_{2.5}$ episode; Chinese and domestic emissions; Horizontal transport; Aerosol process; Integrated process rate; Jeju Island;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kim, S. T., Bae, C. H., Kim, B. U., Kim, H. C., 2017, PM2.5 simulations for the seoul metropolitan area: (I) contributions of precursor emissions in the 2013 CAPSS emissions inventory, J. Korean Soc. Atmos. Environ., 33, 139-158.   DOI
2 Korean Ministry of Environment, 2003-2016, Annual report of ambient air quality in Korea 2002-2015, Korea.
3 Song, S. K., Shon, Z. H., Choi, Y. N., Son, Y., Kang, M., Han, S. B., Bae, M. S., 2019b, Global trend analysis in primary and secondary production of marine aerosol and aerosol optical depth during 2000-2015, Chemosphere, 224, 417-427.   DOI
4 Song, S. K., Shon, Z. H., Moon, S. H., Lee, T. H., Kim, H. S., Kang, S. H., Park, G. H., Yoo, E. C., 2022b, Impact of International Maritime Organization 2020 sulfur content regulations on port air quality at international hub port, J. Clean Prod., 347, 131298.   DOI
5 University Corporation for Atmospheric Research, http://www.mmm.ucar.edu/wrf/users.
6 Song, S. K., Shon, Z. H., Kang, Y. H., Kim, K. H., Han, S. B., Kang, M. S., Bang, J. H., Oh, I. B., 2019a, Source apportionment of VOCs and their impact on air quality and health in the megacity of Seoul, Environ. Pollut., 247, 763-774.   DOI
7 Han, S. B., Song, S. K., Moon, S. H., 2022, Concentration characteristics of PM2.5 and the contributions of physical and chemical processes to its production during 2019 PM2.5 episodes in Seoul, J. Korean Soc. Atmos. Environ., 38, 220-236.   DOI
8 Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating, T., Zhang, Q., Kurokawa, J., Wankmuller, R., Denier van der Gon, H., Kuenen, J. J. P., Klimont, Z., Frost, G., Darras, S., Koffi, B., Li, M., 2015, HTAP_v2.2: A mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution, Atmos. Chem. Phys., 15, 11411-11432.   DOI
9 Koo, Y. S., Kim, S. T., Yun, H. Y., Han, J. S., Lee, J. Y., Kim, K. H., Jeon, E. C., 2008, The simulation of aerosol transport over East Asia region, Atmos. Res., 90, 264-271.   DOI
10 Skamarock, W. C., Klemp, J. B., 2008, A time-split nonhydrostatic atmospheric model for weather research and forecasting applications, J. Comput. Phys., 227, 3465-3485.   DOI
11 Song, S. H., 2016, Air quality and climate change co-benefits from CMAQ simulation of carbon-free island Jeju plan, MSc Dissertation, Konkuk University, Seoul, South Korea.
12 Yarwood, G., Rao, S., Yocke, M. A., Whitten, G. Z., 2005, Updates to the carbon bond chemical mechanism: CB05. Final report to the US EPA, http://www.camx.com/publ/pdfs/cb05_final_report_120805.pdf.
13 Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., Clough, S. A., 1997, Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated k model for the longwave, J. Geophys. Res. Atmos., 102, 16,663-16,682.   DOI
14 Akimoto, H., Mukai, H., Nishikawa, M., Murano, K., Hatakeyama, S., Liu, C. M., Buhr, M, Hsu, K. J., Jaffe, D. A., Zhang, L., Honrath, R., Merrill, J. T., Newell, R. E., 1996, Long range transport of ozone in the East Asian pacific rim region, J. Geophys. Res. Atmos., 101, 1999-2010.   DOI
15 Bae, C. H., Kim, B. U., Kim, H. C., Kim, S. T., 2018, Quantitative assessment on contributions of foreign NOX and VOC emission to ozone concentrations over Gwangyang Bay with CMAQ-HDDM simulations, J. Korean Soc. Atmos. Environ., 34, 708-726.   DOI
16 Bae, M. A., Kim, B. U., Kim, H. C., Woo, J. H., Kim, S. T., 2022, An Observation-based adjustment method of regional contribution estimation from upwind emissions to downwind PM2.5 concentrations, Environ Int., 163, 107214.   DOI
17 Han, S. B., Song, S. K., Shon, Z. H., Kang, Y. H., Bang, J. H., Oh, I. B., 2021, Comprehensive study of a long-lasting severe haze in Seoul megacity and its impacts on fine particulate matter and health, Chemosphere, 268, 129369.   DOI
18 Byun, D. W., 1999, Science algorithms of the EPA models-3 community multiscale air quality (CMAQ) modeling system, US EPA, EPA/600/R-99/030.
19 Oh, I. B., Kim, Y. K., Hwang, M. K., Kim, C. H., Kim, S. T., Song, S. K., 2010, Elevated ozone layers over the Seoul metropolitan region in Korea: evidence for long-range ozone transport from Eastern China and its contribution to surface concentrations, J. Appl. Meteorol. Climatol., 49, 203-220.   DOI
20 Amil, N., Latif, M. T., Khan, M. F., Mohamad, M., 2016, Seasonal variability of PM2.5 composition and sources in the Klang Valley urban-industrial environment, Atmos. Chem. Phys., 16, 5357-5381.   DOI
21 Di, Q., Wang, Y., Zanobetti, A., Wang, Y., Koutrakis, P., Choirat, C., Dominici, F., Schwartz, J. D., 2017, Air pollution and mortality in the medicare population, N. Engl. J. Med., 376, 2513-2522.   DOI
22 Gipson, G., Young, J., 1999, Gas Phase Chemistry, Chapter 8 in: Science algorithms of the EPA Models-3 community multiscale air quality (CMAQ) modeling system, edited by: Byun, D.W. and Ching, J. K. S., Atmospheric Modeling Division National Exposure Research Laboratory US Environmental Protection Agency Research Triangle Park, NC 27711. EPA/600/R-99/030.
23 Hong, S. Y., Noh, Y., Dudhia, J., 2006, A New vertical diffusion package with an explicit treatment of entrainment processes, American Meteorological Society, Mon. Weather Rev., 134, 2318-2341.   DOI
24 Lee, S. H., Lee, K. Y., 2015, Evaluation of contribution rate of PM concentrations for regional emission inventories in Korean peninsula using brute-force sensitivity analysis, J. Environ. Sci. Int., 24, 1525-1540.   DOI
25 Kain, J. S., 2004, The Kain-Fritsch convective parameter ization : An update, J. Appl. Meteorol., 43, 170-181.   DOI
26 Kang, Y. H., Kim, E. H., You, S. H., Bae, M. A., Son, K. W., Kim, B. U., Kim, H. C., Kim, S. T., 2020, Source sectoral impacts on provincial PM2.5 concentrations based on the CAPSS 2016 using the CMAQ model, J. Korean Soc. Atmos. Environ., 37, 17-44.
27 Lee, J. S., Lee, C. D., Kwon, M. J., 2020b, A Study of uncertainty on BFM method with variations in reduction of emissions to estimate source contributions of cargo ships, J. Korean Soc. Atmos. Environ., 36, 757-773.   DOI
28 Lin, M., Oki, T., Bengtsson, M., Kanae, S., Holloway, T., Streets, D. G., 2008, Long-range transport of acidfying substances in East Asia-part II: source-receptor relationships, Atmos. Environ., 42, 5956-5967.   DOI
29 Lim, K. S. S., Hong, S. Y., 2010, Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation Nuclei (CCN) for weather and climate models, Mon. Weather Rev., 138, 1587-1612.   DOI
30 Ma, J., Chu, B., Liu, J., Liu, Y., Zhang, H., He, H., 2018, NOX promotion of SO2 conversion to sulfate: an important mechanism for the occurrence of heavy haze during winter in Beijing, Environ. Pollut., 233, 662-669.   DOI
31 Monin, A. S., Obukhov, A. M., 1954, Basic laws of turbulent mixing in the surface layer of the atmosphere, Contrib. Geophys. Inst. Acad. Sci. USSR, 24, 163-187.
32 Moon, K. J., Park, S. M., Park, J. S., Song, I. H., Jang, S. K., Kim, J. C., Lee, S. J., 2011, Chemical characteristics and source apportionment of PM2.5 in seoul metropolitan area in 2010, J. Korean Soc. Atmos. Environ., 27, 711-722.   DOI
33 Nam, K. P., Lee, H. S., Lee, J. J., Park, H. J., Choi. J. Y., Lee, D. G., 2019, A Study on the method of calculation of domestic and foreign contribution on PM2.5 using brute-force method, J. Korean Soc. Atmos. Environ., 35, 86-96.   DOI
34 National Air Emission Inventory and Research Center, http://www.air.go.kr.
35 Pochanart, P., Akimoto, H., Kinjo, Y., Tanimoto, H., 2002, Surface ozone at four remote island sites and the preliminary assessment of the exceedances of its critical level in Japan, Atmos. Environ., 36, 4235-4250.   DOI
36 Pochanart, P., Hirokawa, J., Kajii, Y., Akimoto, H., Nakao, M., 1999, Infuence of regional-scale anthropogenic activity in Northeast Asia on seasonal variations of surface ozone and carbon monoxide observed at oki, Japan. J. Geophys. Res., 104, 3621-3631.   DOI
37 Song, S. K., Kim, Y. K., Kang, J. E., 2009, Characteristics of ozone concentrations around an urban valley based on the intensive air quality measurement during spring and summer of 2006, J. Korean Soc. Atmos. Environ., 25, 289-303.   DOI
38 Whitten, G. Z., Heo, G., Kimura, Y., McDonald-Buller, E., Allen, D. T., Carter, W. P. L., Yarwood, G., 2010, A New condensed toluene mechanism for carbon bond: CB05-TU, Atmos. Environ., 44, 5346-5355.   DOI
39 United States Geological Survey, 2008, Global land covew characteristics data base version 2.0 user guide, US Geological Survey, http://edc2.usgs.gov/glcc/globdoc2_0.php.
40 Song, J. M., Bu, J. O., Yang, S. H., Lee, J. Y., Kim, W. H., Kang, C. H., 2016, Influences of Asian dust, haze, and mist events on chemical compositions of fine particulate matters at Gosan site, Jeju island in 2014, J. Korean Soc. Atmos. Environ., 32, 67-81.   DOI
41 Song, S. K., Han, S. B., Kim, S. W., 2014, Analysis of meteorological characteristics related to changes in atmospheric environment on Jeju island during 2010-2012, J. Environ. Sci. Int., 23, 1889-1907.   DOI
42 Song, S. K., Shon, Z. H., Bae, M. S., Cho, S. B., Moon, S. H., Kim, H. S., Son, Y. B., Lee, C., 2022a, Effects of natural and anthropogenic emissions on the composition and toxicity of aerosols in the marine atmosphere, Sci. Total Environ., 806, 150928.   DOI
43 Tan, T., Hu, M., Li, M., Guo, Q., Wu, Y., Fang, X., Gu, F., Wang, Y., Wu, Z., 2018, New insight into PM2.5 pollution patterns in Beijing based on one-year measurement of chemical compositions, Sci. Total Environ, 621, 734-743.   DOI
44 U.S. EPA, 1996, Air quality criteria for particulate matter, Off. Res. Dev., EPA/600/P-95/001bF.
45 Yu, G. H., Zhang, Y., Cho, S. Y., Park, S. S., 2017, Influence of haze pollution on water-soluble chemical species in PM2.5 and size-resolved particles at an urban site during fall, J. Environ. Sci., 57, 370-382.   DOI
46 Lee, J. S., Choi, S. I., Lee, C. D., Bang, K. I., Kwon, M. J., Dong, J. I., 2020a, A Study on the improvement of temporal resolution and application of CMAQ simulations for quantitative assessment on source contribution of emissions from cargo ships focused on PM2.5, J. Korean Soc. Atmos. Environ., 36, 93-107.   DOI
47 Yang, F., Tan, J., Zhao, Q., Du, Z., He, K., Ma, Y., Duan, F., Chen, G., Zhao, Q., 2011, Characteristics of PM2.5 speciation in representative megacities and across China, Atmos. Chem. Phys., 11, 5207-5219.   DOI
48 Yu, G. H., Cho, S. Y., Bae, M. S., Lee, K. H., Park, S. S., 2015, Investigation of PM2.5 pollution episodes in Gwangju, J. Korean Soc. Atmos. Environ., 31, 269-286.   DOI
49 Yu, G. H., Park, S. S., Park, J. S., Park, S. M., Song, I. H., Oh, J., Shin, H. J., Lee, M. D., Lim, H. B., Kim, H. W., Choi, J. Y., 2018, Pollution characteristics of PM2.5 observed during winter and summer in Baengryeongdo and seoul, J. Korean Soc. Atmos. Environ., 34, 38-55.   DOI
50 Xie, J., Zhu, J., Li, Y., 2008, Assessment and inter-comparison of five high-resolution sea surface temperature products in the shelf and coastal seas around China, Cont. Shelf Res., 28, 1286-1293.   DOI
51 Community Modeling and Analysis System, https://www.cmascenter.org/cmaq.
52 Dudhia, J., 1989, Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46, 3077-3107.   DOI
53 Dudhia, J., 1996, A Multi-layer soil temperature model for MM5, The Sixth PSU/NCAR mesoscale model users Workshop, Boulder, CO, USA: National Center for Atmospheric Research, 22-24.
54 Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., Geron, C., 2006, Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181-3210.   DOI
55 Han, S. B., 2016, Meteorological analysis to examine the cause of high concentration air pollution in Jeju: Observations and modeling study, MSc Dissertation, Jeju National University, Jeju, South Korea.
56 Hong, S. Y., Dudhia, J., Chen, S. H., 2004, A Revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation, Mon. Weather Rev., 132, 103-120.   DOI
57 Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J., Cohen, M. D., Ngan, F., 2015, NOAA's HYSPLIT atmospheric transport and dispersion modeling system, Bull. Am. Meteorol. Soc., 96, 2059-2077.   DOI
58 Itahashi, S., Uno, I., Kim, S., 2012, Source contributions of sulfate aerosol over East Asia estimated by CMAQ-DDM, Environ. Sci. Technol., 46, 6733-6741.   DOI
59 Kajino, M., Ueda, H., Sato, K., Sakurai, T., 2011, Spatial distribution of the source-receptor relationship of sulfur in Northeast Asia, Atmos. Chem. Phys., 11, 6475-6491.   DOI
60 Cho, S. B., Song, S. K., Moon, S. H., 2021, Effect of analysis nudging data assimilation on the PM2.5 concentration simulation during a haze event in the Seoul metropolitan area in 2019, J. Korean Soc. Atmos. Environ., 37, 231-247.   DOI
61 Kim, C. H., Song, C. K., 2003, Lagrangian particle dispersion modeling intercomparison: internal versus foreign modeling results on the nuclear spill event, J. Korean Soc. Atmos. Environ., 19, 249-261.
62 Kang, Y. H., You, S. H., Kim, E. H., Bae, M. A., Son, K. W., Kim, S. T., 2021, Local authority-level source apportionments of PM2.5 concentrations based on the CAPSS 2016: (VIII) Busan and Gyeongnam, J. Korean Soc. Atmos. Environ., 37, 871-890.   DOI