DOI QR코드

DOI QR Code

Contributions of Emissions and Atmospheric Physical and Chemical Processes to High PM2.5 Concentrations on Jeju Island During Spring 2018

2018년 봄철 제주지역 고농도 PM2.5에 대한 배출량 및 물리·화학적 공정 기여도 분석

  • Baek, Joo-Yeol (Faculty of Earth and Marine Convergence/Earth and Marine Science Major, Jeju National University) ;
  • Song, Sang-Keun (Faculty of Earth and Marine Convergence/Earth and Marine Science Major, Jeju National University) ;
  • Han, Seung-Beom (Observation Research Department, National Institute of Meteorological Sciences) ;
  • Cho, Seong-Bin (Faculty of Earth and Marine Convergence/Earth and Marine Science Major, Jeju National University)
  • 백주열 (제주대학교 지구해양융합학부 지구해양전공) ;
  • 송상근 (제주대학교 지구해양융합학부 지구해양전공) ;
  • 한승범 (국립기상과학원 관측연구부) ;
  • 조성빈 (제주대학교 지구해양융합학부 지구해양전공)
  • Received : 2022.06.06
  • Accepted : 2022.07.05
  • Published : 2022.07.31

Abstract

In this study, the contributions of emissions (foreign and domestic) and atmospheric physical and chemical processes to PM2.5 concentrations were evaluated during a high PM2.5 episode (March 24-26, 2018) observed on the Jeju Island in the spring of 2018. These analyses were performed using the community multi-scale air quality (CMAQ) modeling system using the brute-force method and integrated process rate (IPR) analysis, respectively. The contributions of domestic emissions from South Korea (41-45%) to PM2.5 on the Jeju Island were lower than those (81-89%) of long-range transport (LRT) from China. The substantial contribution of LRT was also confirmed in conjunction with the air mass trajectory analysis, indicating that the frequency of airflow from China (58-62% of all trajectories) was higher than from other regions (28-32%) (e.g., South Korea). These results imply that compared to domestic emissions, emissions from China have a stronger impact than domestic emissions on the high PM2.5 concentrations in the study area. From the IPR analysis, horizontal transport contributed substantially to PM2.5 concentrations were dominant in most of the areas of the Jeju Island during the high PM2.5 episode, while the aerosol process and vertical transport in the southern areas largely contributed to higher PM2.5 concentrations.

Keywords

Acknowledgement

이 논문은 2020년도 정부(미래창조과학부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF-2020R1A2C2011081).

References

  1. Akimoto, H., Mukai, H., Nishikawa, M., Murano, K., Hatakeyama, S., Liu, C. M., Buhr, M, Hsu, K. J., Jaffe, D. A., Zhang, L., Honrath, R., Merrill, J. T., Newell, R. E., 1996, Long range transport of ozone in the East Asian pacific rim region, J. Geophys. Res. Atmos., 101, 1999-2010. https://doi.org/10.1029/95JD00025
  2. Amil, N., Latif, M. T., Khan, M. F., Mohamad, M., 2016, Seasonal variability of PM2.5 composition and sources in the Klang Valley urban-industrial environment, Atmos. Chem. Phys., 16, 5357-5381. https://doi.org/10.5194/acp-16-5357-2016
  3. Bae, C. H., Kim, B. U., Kim, H. C., Kim, S. T., 2018, Quantitative assessment on contributions of foreign NOX and VOC emission to ozone concentrations over Gwangyang Bay with CMAQ-HDDM simulations, J. Korean Soc. Atmos. Environ., 34, 708-726. https://doi.org/10.5572/KOSAE.2018.34.5.708
  4. Bae, M. A., Kim, B. U., Kim, H. C., Woo, J. H., Kim, S. T., 2022, An Observation-based adjustment method of regional contribution estimation from upwind emissions to downwind PM2.5 concentrations, Environ Int., 163, 107214. https://doi.org/10.1016/j.envint.2022.107214
  5. Byun, D. W., 1999, Science algorithms of the EPA models-3 community multiscale air quality (CMAQ) modeling system, US EPA, EPA/600/R-99/030.
  6. Cho, S. B., Song, S. K., Moon, S. H., 2021, Effect of analysis nudging data assimilation on the PM2.5 concentration simulation during a haze event in the Seoul metropolitan area in 2019, J. Korean Soc. Atmos. Environ., 37, 231-247. https://doi.org/10.5572/KOSAE.2021.37.2.231
  7. Community Modeling and Analysis System, https://www.cmascenter.org/cmaq.
  8. Di, Q., Wang, Y., Zanobetti, A., Wang, Y., Koutrakis, P., Choirat, C., Dominici, F., Schwartz, J. D., 2017, Air pollution and mortality in the medicare population, N. Engl. J. Med., 376, 2513-2522. https://doi.org/10.1056/NEJMoa1702747
  9. Dudhia, J., 1989, Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46, 3077-3107. https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
  10. Dudhia, J., 1996, A Multi-layer soil temperature model for MM5, The Sixth PSU/NCAR mesoscale model users Workshop, Boulder, CO, USA: National Center for Atmospheric Research, 22-24.
  11. Gipson, G., Young, J., 1999, Gas Phase Chemistry, Chapter 8 in: Science algorithms of the EPA Models-3 community multiscale air quality (CMAQ) modeling system, edited by: Byun, D.W. and Ching, J. K. S., Atmospheric Modeling Division National Exposure Research Laboratory US Environmental Protection Agency Research Triangle Park, NC 27711. EPA/600/R-99/030.
  12. Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., Geron, C., 2006, Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181-3210. https://doi.org/10.5194/acp-6-3181-2006
  13. Han, S. B., Song, S. K., Moon, S. H., 2022, Concentration characteristics of PM2.5 and the contributions of physical and chemical processes to its production during 2019 PM2.5 episodes in Seoul, J. Korean Soc. Atmos. Environ., 38, 220-236. https://doi.org/10.5572/KOSAE.2022.38.2.220
  14. Han, S. B., Song, S. K., Shon, Z. H., Kang, Y. H., Bang, J. H., Oh, I. B., 2021, Comprehensive study of a long-lasting severe haze in Seoul megacity and its impacts on fine particulate matter and health, Chemosphere, 268, 129369. https://doi.org/10.1016/j.chemosphere.2020.129369
  15. Han, S. B., 2016, Meteorological analysis to examine the cause of high concentration air pollution in Jeju: Observations and modeling study, MSc Dissertation, Jeju National University, Jeju, South Korea.
  16. Hong, S. Y., Dudhia, J., Chen, S. H., 2004, A Revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation, Mon. Weather Rev., 132, 103-120. https://doi.org/10.1175/1520-0493(2004)132<0103:aratim>2.0.co;2
  17. Hong, S. Y., Noh, Y., Dudhia, J., 2006, A New vertical diffusion package with an explicit treatment of entrainment processes, American Meteorological Society, Mon. Weather Rev., 134, 2318-2341. https://doi.org/10.1175/mwr3199.1
  18. Itahashi, S., Uno, I., Kim, S., 2012, Source contributions of sulfate aerosol over East Asia estimated by CMAQ-DDM, Environ. Sci. Technol., 46, 6733-6741. https://doi.org/10.1021/es300887w
  19. Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating, T., Zhang, Q., Kurokawa, J., Wankmuller, R., Denier van der Gon, H., Kuenen, J. J. P., Klimont, Z., Frost, G., Darras, S., Koffi, B., Li, M., 2015, HTAP_v2.2: A mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution, Atmos. Chem. Phys., 15, 11411-11432. https://doi.org/10.5194/acp-15-11411-2015
  20. Kain, J. S., 2004, The Kain-Fritsch convective parameter ization : An update, J. Appl. Meteorol., 43, 170-181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
  21. Kajino, M., Ueda, H., Sato, K., Sakurai, T., 2011, Spatial distribution of the source-receptor relationship of sulfur in Northeast Asia, Atmos. Chem. Phys., 11, 6475-6491. https://doi.org/10.5194/acp-11-6475-2011
  22. Kang, Y. H., You, S. H., Kim, E. H., Bae, M. A., Son, K. W., Kim, S. T., 2021, Local authority-level source apportionments of PM2.5 concentrations based on the CAPSS 2016: (VIII) Busan and Gyeongnam, J. Korean Soc. Atmos. Environ., 37, 871-890. https://doi.org/10.5572/KOSAE.2021.37.6.871
  23. Kang, Y. H., Kim, E. H., You, S. H., Bae, M. A., Son, K. W., Kim, B. U., Kim, H. C., Kim, S. T., 2020, Source sectoral impacts on provincial PM2.5 concentrations based on the CAPSS 2016 using the CMAQ model, J. Korean Soc. Atmos. Environ., 37, 17-44.
  24. Kim, C. H., Song, C. K., 2003, Lagrangian particle dispersion modeling intercomparison: internal versus foreign modeling results on the nuclear spill event, J. Korean Soc. Atmos. Environ., 19, 249-261.
  25. Kim, S. T., Bae, C. H., Kim, B. U., Kim, H. C., 2017, PM2.5 simulations for the seoul metropolitan area: (I) contributions of precursor emissions in the 2013 CAPSS emissions inventory, J. Korean Soc. Atmos. Environ., 33, 139-158. https://doi.org/10.5572/KOSAE.2017.33.2.139
  26. Koo, Y. S., Kim, S. T., Yun, H. Y., Han, J. S., Lee, J. Y., Kim, K. H., Jeon, E. C., 2008, The simulation of aerosol transport over East Asia region, Atmos. Res., 90, 264-271. https://doi.org/10.1016/j.atmosres.2008.03.014
  27. Korean Ministry of Environment, 2003-2016, Annual report of ambient air quality in Korea 2002-2015, Korea.
  28. Lee, J. S., Choi, S. I., Lee, C. D., Bang, K. I., Kwon, M. J., Dong, J. I., 2020a, A Study on the improvement of temporal resolution and application of CMAQ simulations for quantitative assessment on source contribution of emissions from cargo ships focused on PM2.5, J. Korean Soc. Atmos. Environ., 36, 93-107. https://doi.org/10.5572/kosae.2020.36.1.093
  29. Lee, J. S., Lee, C. D., Kwon, M. J., 2020b, A Study of uncertainty on BFM method with variations in reduction of emissions to estimate source contributions of cargo ships, J. Korean Soc. Atmos. Environ., 36, 757-773. https://doi.org/10.5572/KOSAE.2020.36.6.757
  30. Lee, S. H., Lee, K. Y., 2015, Evaluation of contribution rate of PM concentrations for regional emission inventories in Korean peninsula using brute-force sensitivity analysis, J. Environ. Sci. Int., 24, 1525-1540. https://doi.org/10.5322/JESI.2015.24.11.1525
  31. Lin, M., Oki, T., Bengtsson, M., Kanae, S., Holloway, T., Streets, D. G., 2008, Long-range transport of acidfying substances in East Asia-part II: source-receptor relationships, Atmos. Environ., 42, 5956-5967. https://doi.org/10.1016/j.atmosenv.2008.03.039
  32. Lim, K. S. S., Hong, S. Y., 2010, Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation Nuclei (CCN) for weather and climate models, Mon. Weather Rev., 138, 1587-1612. https://doi.org/10.1175/2009mwr2968.1
  33. Ma, J., Chu, B., Liu, J., Liu, Y., Zhang, H., He, H., 2018, NOX promotion of SO2 conversion to sulfate: an important mechanism for the occurrence of heavy haze during winter in Beijing, Environ. Pollut., 233, 662-669. https://doi.org/10.1016/j.envpol.2017.10.103
  34. Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., Clough, S. A., 1997, Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated k model for the longwave, J. Geophys. Res. Atmos., 102, 16,663-16,682. https://doi.org/10.1029/97JD00237
  35. Monin, A. S., Obukhov, A. M., 1954, Basic laws of turbulent mixing in the surface layer of the atmosphere, Contrib. Geophys. Inst. Acad. Sci. USSR, 24, 163-187.
  36. Moon, K. J., Park, S. M., Park, J. S., Song, I. H., Jang, S. K., Kim, J. C., Lee, S. J., 2011, Chemical characteristics and source apportionment of PM2.5 in seoul metropolitan area in 2010, J. Korean Soc. Atmos. Environ., 27, 711-722. https://doi.org/10.5572/KOSAE.2011.27.6.711
  37. Nam, K. P., Lee, H. S., Lee, J. J., Park, H. J., Choi. J. Y., Lee, D. G., 2019, A Study on the method of calculation of domestic and foreign contribution on PM2.5 using brute-force method, J. Korean Soc. Atmos. Environ., 35, 86-96. https://doi.org/10.5572/kosae.2019.35.1.086
  38. National Air Emission Inventory and Research Center, http://www.air.go.kr.
  39. Oh, I. B., Kim, Y. K., Hwang, M. K., Kim, C. H., Kim, S. T., Song, S. K., 2010, Elevated ozone layers over the Seoul metropolitan region in Korea: evidence for long-range ozone transport from Eastern China and its contribution to surface concentrations, J. Appl. Meteorol. Climatol., 49, 203-220. https://doi.org/10.1175/2009JAMC2213.1
  40. Pochanart, P., Akimoto, H., Kinjo, Y., Tanimoto, H., 2002, Surface ozone at four remote island sites and the preliminary assessment of the exceedances of its critical level in Japan, Atmos. Environ., 36, 4235-4250. https://doi.org/10.1016/S1352-2310(02)00339-4
  41. Pochanart, P., Hirokawa, J., Kajii, Y., Akimoto, H., Nakao, M., 1999, Infuence of regional-scale anthropogenic activity in Northeast Asia on seasonal variations of surface ozone and carbon monoxide observed at oki, Japan. J. Geophys. Res., 104, 3621-3631. https://doi.org/10.1029/1998JD100071
  42. Skamarock, W. C., Klemp, J. B., 2008, A time-split nonhydrostatic atmospheric model for weather research and forecasting applications, J. Comput. Phys., 227, 3465-3485. https://doi.org/10.1016/j.jcp.2007.01.037
  43. Song, S. H., 2016, Air quality and climate change co-benefits from CMAQ simulation of carbon-free island Jeju plan, MSc Dissertation, Konkuk University, Seoul, South Korea.
  44. Song, J. M., Bu, J. O., Yang, S. H., Lee, J. Y., Kim, W. H., Kang, C. H., 2016, Influences of Asian dust, haze, and mist events on chemical compositions of fine particulate matters at Gosan site, Jeju island in 2014, J. Korean Soc. Atmos. Environ., 32, 67-81. https://doi.org/10.5572/KOSAE.2016.32.1.067
  45. Song, S. K., Kim, Y. K., Kang, J. E., 2009, Characteristics of ozone concentrations around an urban valley based on the intensive air quality measurement during spring and summer of 2006, J. Korean Soc. Atmos. Environ., 25, 289-303. https://doi.org/10.5572/KOSAE.2009.25.4.289
  46. Song, S. K., Han, S. B., Kim, S. W., 2014, Analysis of meteorological characteristics related to changes in atmospheric environment on Jeju island during 2010-2012, J. Environ. Sci. Int., 23, 1889-1907. https://doi.org/10.5322/JESI.2014.23.11.1889
  47. Song, S. K., Shon, Z. H., Kang, Y. H., Kim, K. H., Han, S. B., Kang, M. S., Bang, J. H., Oh, I. B., 2019a, Source apportionment of VOCs and their impact on air quality and health in the megacity of Seoul, Environ. Pollut., 247, 763-774. https://doi.org/10.1016/j.envpol.2019.01.102
  48. Song, S. K., Shon, Z. H., Choi, Y. N., Son, Y., Kang, M., Han, S. B., Bae, M. S., 2019b, Global trend analysis in primary and secondary production of marine aerosol and aerosol optical depth during 2000-2015, Chemosphere, 224, 417-427. https://doi.org/10.1016/j.chemosphere.2019.02.152
  49. Song, S. K., Shon, Z. H., Bae, M. S., Cho, S. B., Moon, S. H., Kim, H. S., Son, Y. B., Lee, C., 2022a, Effects of natural and anthropogenic emissions on the composition and toxicity of aerosols in the marine atmosphere, Sci. Total Environ., 806, 150928. https://doi.org/10.1016/j.scitotenv.2021.150928
  50. Song, S. K., Shon, Z. H., Moon, S. H., Lee, T. H., Kim, H. S., Kang, S. H., Park, G. H., Yoo, E. C., 2022b, Impact of International Maritime Organization 2020 sulfur content regulations on port air quality at international hub port, J. Clean Prod., 347, 131298. https://doi.org/10.1016/j.jclepro.2022.131298
  51. Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J., Cohen, M. D., Ngan, F., 2015, NOAA's HYSPLIT atmospheric transport and dispersion modeling system, Bull. Am. Meteorol. Soc., 96, 2059-2077. https://doi.org/10.1175/BAMS-D-14-00110.1
  52. Tan, T., Hu, M., Li, M., Guo, Q., Wu, Y., Fang, X., Gu, F., Wang, Y., Wu, Z., 2018, New insight into PM2.5 pollution patterns in Beijing based on one-year measurement of chemical compositions, Sci. Total Environ, 621, 734-743. https://doi.org/10.1016/j.scitotenv.2017.11.208
  53. University Corporation for Atmospheric Research, http://www.mmm.ucar.edu/wrf/users.
  54. United States Geological Survey, 2008, Global land covew characteristics data base version 2.0 user guide, US Geological Survey, http://edc2.usgs.gov/glcc/globdoc2_0.php.
  55. U.S. EPA, 1996, Air quality criteria for particulate matter, Off. Res. Dev., EPA/600/P-95/001bF.
  56. Whitten, G. Z., Heo, G., Kimura, Y., McDonald-Buller, E., Allen, D. T., Carter, W. P. L., Yarwood, G., 2010, A New condensed toluene mechanism for carbon bond: CB05-TU, Atmos. Environ., 44, 5346-5355. https://doi.org/10.1016/j.atmosenv.2009.12.029
  57. Yang, F., Tan, J., Zhao, Q., Du, Z., He, K., Ma, Y., Duan, F., Chen, G., Zhao, Q., 2011, Characteristics of PM2.5 speciation in representative megacities and across China, Atmos. Chem. Phys., 11, 5207-5219. https://doi.org/10.5194/acp-11-5207-2011
  58. Yarwood, G., Rao, S., Yocke, M. A., Whitten, G. Z., 2005, Updates to the carbon bond chemical mechanism: CB05. Final report to the US EPA, http://www.camx.com/publ/pdfs/cb05_final_report_120805.pdf.
  59. Yu, G. H., Cho, S. Y., Bae, M. S., Lee, K. H., Park, S. S., 2015, Investigation of PM2.5 pollution episodes in Gwangju, J. Korean Soc. Atmos. Environ., 31, 269-286. https://doi.org/10.5572/KOSAE.2015.31.3.269
  60. Yu, G. H., Park, S. S., Park, J. S., Park, S. M., Song, I. H., Oh, J., Shin, H. J., Lee, M. D., Lim, H. B., Kim, H. W., Choi, J. Y., 2018, Pollution characteristics of PM2.5 observed during winter and summer in Baengryeongdo and seoul, J. Korean Soc. Atmos. Environ., 34, 38-55. https://doi.org/10.5572/KOSAE.2018.34.1.038
  61. Yu, G. H., Zhang, Y., Cho, S. Y., Park, S. S., 2017, Influence of haze pollution on water-soluble chemical species in PM2.5 and size-resolved particles at an urban site during fall, J. Environ. Sci., 57, 370-382. https://doi.org/10.1016/j.jes.2016.10.018
  62. Xie, J., Zhu, J., Li, Y., 2008, Assessment and inter-comparison of five high-resolution sea surface temperature products in the shelf and coastal seas around China, Cont. Shelf Res., 28, 1286-1293. https://doi.org/10.1016/j.csr.2008.02.020