DOI QR코드

DOI QR Code

Concentrations of Particulate Matter Exposed to Farm Workers in the Broiler Houses

육계사 내 작업자의 미세먼지 노출량 현장모니터링

  • Seo, Hyo-Jae (Department of Rural Construction Engineering, Jeonbuk National University) ;
  • Oh, Byung-Wook (Department of Rural Construction Engineering, Jeonbuk National University) ;
  • Kim, Hyo-Cher (National Institute of Agricultural Sciences) ;
  • Sin, So-Jung (National Institute of Agricultural Sciences) ;
  • Seo, Il-Hwan (Department of Rural Construction Engineering, Jeonbuk National University)
  • Received : 2020.07.10
  • Accepted : 2020.08.18
  • Published : 2020.09.30

Abstract

As domestic meat consumption increases, the broiler production industry has been larger and denser. The concentration of particulate matter (PM) and harmful gases generated is also increasing inside livestock house. However, the current research status of PM exposed to farm workers and the health effects are in the early stage. To understand PM concentration affecting workers in the broiler house, field monitoring was conducted according to its size distributions. Concentrations of PM10, PM2.5, and TD (Total Dust) were monitored using personal air samplers with teflon filter during working and moving periods considering the ventilation systems of 6 broiler houses. The purpose of this study is to monitor the PM concentration in the experimental broiler houses operated by forced ventilation system generally used in Korea and to evaluate the regional concentrations through airflow pattern. The PM concentrations were increased from inlet to outlet vents resulting in 1,872 of TD, 1,385 of PM10, and 209 ㎍/㎥ of PM2.5, respectively. The TD and PM10 concentrations were increased when the workers and broilers were moving. Among them, the particle size that occupied the largest amount of PM was 13.75 ㎛. These results suggest that personal protection equipments are important to reduce the health effect from PM inhalation.

Keywords

References

  1. Bottcher, R. W., 2001. An environmental nuisance: Odor concentrated and transported by dust. Chemical Senses 26(3): 327-331. doi:10.1093/chemse/26.3.327.
  2. Banhazi, T. M., J. Seedorf, M. Laffrique, and D. L. Rutley, 2008. Identification of the risk factors for high airborne particle concentrations in broiler buildings using statistical modelling. Biosystems Engineering 101(2008): 100-110. doi:10.5389/KSAE.2014.56.6.031.
  3. Cambra-Lopez, M., 2010. Control of particulate matter emissions from poultry and pig houses. Ph.D. diss., Ind.: Universitat Politecnica de Valencia. doi:10.4995/thesis/10251/8501.
  4. Cambra-Lopez, M., T. Hermosilla, H. T. Lai, M. Mont ero, A. J. Aarnink, and N. W. Ogink, 2010. Source identification and quantification of particulate matter emitted from livestock houses. In International Symposium on Air Quality and Manure Management for Agriculture Conference Proceedings, 13-16 September 2010, Dallas, Texas (p. 41). doi:10.13031/2013.32709.
  5. Castaneda, A. R., K. J. Bein, S. Smiley-Jewell, and K. E. Pinkerton, 2017. Fine particulate matter (PM2.5) enhances allergic sensitization in BALB/c mice. Journal Toxicology Environmental Health A 80: 197-207. doi:10.1080/15287394.2016.1222920.
  6. Donham, K., P. Haglind, Y. Peterson, R. Rylander, and L. Belin, 1989. Environmental and health studies of farm workers in Swedish swine confinement buildings. British Journal of Industrial Medicine 46(1): 31-37. doi:10.1136/oem.46.1.31.
  7. Donham, K. J., D. Cumro, S. J. Reynolds, and J. A. Merchant, 2000. Dose response relationships between occupational aerosol exposures and cross-shift declines of lung function in poultry workers: Recommendations for exposure limits. Journal of Occupational and Environmental Medicine 42(3): 260-269. doi:10.1097/00043764-200003000-00006.
  8. Jo, Y. S., K. S. Kwon, I. B. Lee, T. H. Ha, S. J. Park, R. W. Kim, U. H. Yeo, S. Y. Lee, and S. N. Lee, 2015. Measurement of dust concentration in a naturally ventilated broiler house according to season and worker's access. Journal of The Korean Society of Agricultural Engineers 57(6): 35-46 (in Korean). doi:10.5389/ksae.2015.57.6.035.
  9. Kim, I., K. R. Kim, K. S. Lee, H. S. Chae, and S. Kim, 2014. A survey on the workplace environment and personal protective equipment of poultry farmers. Korean Journal of Environmental Health Sciences 40(6): 454-468 (in Korean). doi:10.5668/JEHS.2014.40.6.454.
  10. Kim, K. R., H. Kim, K. Lee, and H. S. Chae, 2014. Exposure to dust and organic gas during chicken entrance and shipment tasks in poultry farms. Journal of Korean Society of Occupational and Environmental Hygiene 24(4):471-477 (in Korean). doi:10.15269/jksoeh.2014.24.4.471.
  11. Kim, K. Y., 2017. Distribution of concentration and emission of dust according to types of poultry buildings in Korea. Korean Journal of Environmental Health Sciences 43(3): 185-193 (in Korean). doi:10.5668/JEHS.2017.43.3.185.
  12. Kim, K. Y., H. J. Ko, H. T. Kim, D. K. Kim, and Y. S. Kim, 2010. Concentration characteristics of ammonia and hydrogen sulfide emitted from domestic types of chicken buildings. Journal Korean Society Indoor Environmental 7(4): 216-223 (in Korean). doi:10.1016/j.jenvman.2007.02.003.
  13. Korea Occupational Safety and Health Agency, 2011. http://www.kosha.or.kr Operation guide for agency of working environment measurement, 29-59.
  14. Kwon, K. S., Y. S. Jo, I. B. Lee, T. H. Ha, and S. W. Hong, 2014. Measurement of dust concentration in a mechanically ventilated broiler house and analysis of dust generation from ground beds. Journal of the Korean Society of Agricultural Engineers 56(6): 31-43 (in Korean). doi:10.5389/KSAE.2014.56.6.031.
  15. Olson, D. K., and S. M. Bark, 1996. Health hazards affecting the animal confinement farm worker. AAOHN Journal 44(4): 198-204. doi:10.1177/216507999604400408.
  16. Poole, J. A., D. J. Romberger, T. A. Wyatt, E. Staab, J. Van de Graaff, G. M. Thiele, A. Dusad, L. W. Klassen, M. J. Duryee, and T. R. Mikuls, 2015. Age impacts pulmonary inflammation and systemic bone response to inhaled organic dust exposure. Journal Toxicology Environmental Health A 78: 1201-1216. doi:10.1080/15287394.2015.1075165.
  17. Radon, K., C. Weber, M. Iversen, B. Danuser, S. Pedersen, and D. Nowak, 2001. Exposure assessment and lung function in pig and poultry farmers. Occupational and Environmental Medicine 58(6): 405-410. doi:10.1136/oem.58.6.405.
  18. Shin, C. L., K. S. Lee, K. R. Kim, T. S. Kang, and N. W. Paik, 2004. A studs on exposure to organic dust and ammonia in poultry confinement buildings. Journal of Agricultural Medicine and Community Health 29(2):303-314 (in Korean).
  19. Statistics Korea, 2019. http://www.kosis.go.kr Accessed 12 February 2020.
  20. Takai, H., S. Pedersen, J. O. Johnsen, J. H. M. Metz, P. W. G. Groot Koerkamp, G. H. Uenk, V. R. Phillips, M. R. Holden, R. W. Sneath, J. L. Short, R. P. White, J. Hartung, J. Seedorf, M. Schroder, K. H. Linkert, and C. M. Wathes, 1998. Concentration and emissions of airborne dust in livestock buildings in northern Europe. Journal of Agricultural Engineering Research 1998(70): 59-77. doi:10.1006/jaer.1997.0280.
  21. Wilson, D. J., E. Gabriel, A. J. H. Leatherbarrow, J. Cheesbrough, S. Gee, E. Bolton, A. Fox, P. Fearnhead, C. A. Hart, and P. J. Diggle, 2008. Tracing the source of campylobacteriosis. PLOS Genetics 4(9): e1000203. doi: 10.1371/journal.pgen.1000203.
  22. Zuskin, E., J. Mustajbegovic, E. N. Schachter, J. Kern, N. Rienzi, S. Goswami, Z. Marom, and S. Maayani, 1995. Respiratory function in poultry workers and pharmacologic characterization of poultry dust extract. Environmental Research 70: 11-19. doi:10.1006/enrs.1995.1040.