• Title/Summary/Keyword: PLA(polylactic acid)

Search Result 86, Processing Time 0.02 seconds

Fused Deposition Modeling of Iron-alloy using Carrier Composition

  • Harshada R. Chothe;Jin Hwan Lim;Jung Gi Kim;Taekyung Lee;Taehyun Nam;Jeong Seok Oh
    • Elastomers and Composites
    • /
    • v.58 no.1
    • /
    • pp.44-56
    • /
    • 2023
  • Additive manufacturing (AM) or three-dimensional (3D) printing of metals has been drawing significant attention due to its reliability, usefulness, and low cost with rapid prototyping. Among the various AM technologies, fused deposition modeling (FDM) or fused filament fabrication is receiving much interest because of its simple manufacturing processing, low material waste, and cost-effective equipment. FDM technology uses metal-filled polymer filaments for 3D printing, followed by debinding and sintering to fabricate complex metal parts. An efficient binder is essential for producing polymer filaments and the thermal post-processing of printed objects. This study involved an in-depth investigation of and a fabrication route for a novel multi-component binder system with steel alloy powder (45 vol.%) ranging from filament fabrication and 3D printing to debinding and sintering. The binder system consisted of polyvinyl pyrrolidone (PVP) as a binder and thermoplastic polyurethane (TPU) and polylactic acid (PLA) as a carrier. The PVP binder held the metal components tightly by maintaining their stoichiometry, and the TPU and PLA in the ratio of 9:1 provided flexibility, stiffness, and strength to the filament for 3D printing. The efficacy of the binder system was examined by fabricating 3D-printed cubic structures. The results revealed that the thermal debinding and sintering processes effectively removed the binder/carrier from the cubic structures, resulting in isotropic shrinkage of approximately 15.8% in all directions. The scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) patterns displayed the microstructure behavior, phase transition, and elemental composition of the 3D cubic structure.

Effect of Surface Modifying Agents Towards Enhancing Performance of Waste Gypsum Based PBAT Composite

  • Kong, Tae Woong;Kim, In Tae;Sinha, Tridib Kumar;Moon, Junho;Kim, Dong Ho;Kim, Inseon;Na, Kwangyong;Kim, Min-Woo;Kim, Hye-Lin;Hyeong, Taegyeong;Oh, Jeong Seok
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.347-353
    • /
    • 2020
  • Stearic acid (SA), polyethylene glycol (PEG), and malic acid (MA) have been used to modify the surface of waste gypsum to develop corresponding poly (butylene adipate-co-terephthalate) (PBAT) composites. According to the mechanical properties, MA-treated gypsum (MA-gypsum) showed the best performance, whereas SA-gypsum showed the worst performance. In contrast to SA and PEG (having -COOH and -OH as polar functional groups, respectively), the presence of both -OH and -COOH in MA is responsible for the superior surface treatment of gypsum and its better dispersion in the polymer matrix (as revealed by FE-SEM analyses). The presence of long aliphatic chain in SA is supposed to inhibit the dispersion of SA-gypsum. Further, the performance of MA-gypsum/PBAT was enhanced by adding polylactic acid (PLA). The maximum optimized contents of MA-gypsum and PLA are 20 and 7.5 wt% for developing a high-performance PBAT composite.

Characterization of Biodegradable Conductive Composite Films with Polyaniline(1) (폴리아닐린을 함유한 도전성 복합필름의 제조 및 특성 연구(1))

  • Lee, Soo;Seong, Eun-Suk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.218-224
    • /
    • 2014
  • Biodegradable conductive composite films of polylactic acid(PLA) were prepared with various amounts of polyaniline(PAni) doped with dodecylbenzenesulphonic acid (DBSA) by solution blending technique to identify their mechanical and electric properties. 15 mol% of DBSA doped PAni was easily obtained by polymerizing of aniline in the presence of APS and DBSA in THF at $0^{\circ}C$. FE SEM characterization showed that PAni were well spread on the PLA domains. The tensile strength of composite film with 15 wt% of PAni was significantly decreased from $565.3kg_f/cm^2$ for PLA film itself to $309.7kg_f/cm^2$. Elongations of all PAni/PLA composite films were also decreased up to 3-6%. Electrical conductivity of $2.9{\times}10^{-3}$ S/cm could be achieved for the composite film containing 15 wt% of PAni-DBSA. Thermal stability of these composite films measured by thermogravimetric analysis(TGA) showed a slight decrease with the amount of PAni in PAni/PLA composite films at temperature lower than $300^{\circ}C$. However, the final weight of char was strongly depended with the amount of PAni in original composite films. Conclusively, PAni/PLA composite films containing more than a 15 wt% of PAni could be used for intercepting electromagnetic and preventing electrostatic applications.

Clinical study on therpeutic effects of Guided tissue regeneration by $Nanogide-C^{(R)}$ and $Biomesh^{(R)}$ in furcation defects (($Nanogide-C^{(R)}$$Biomesh^{(R)}$를 이용한 이개부 결손부에 대한 조직유도재생술의 임상효과)

  • Han, Kyung-Hee;Jung, Jong-Won;Hyun, Ha-Na;Kim, Ji-Man;Kim, Yun-Sang;Pi, Sung-Hee;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.4
    • /
    • pp.877-889
    • /
    • 2005
  • This study was designed to compare the effects of treatment using chitosan membrane $(Nanogide-C^{(R)})$ resorbable barrier with control treated by polylactic acid/polylacticglycolic acid membrane(PLA/PLGA membrane, $Biomesh^{(R)}$). 44 furcation defecs from 44 patients with class 2 furcation degree were used for this study, 22 sites of them were treated by chitosan membrane as experimental group and 22 site were treated by PLA/PLGA membrane as control group. Clinical parameters including probing depth, gingival recession, attachment level and radiographic examination were evlauated at base line, 1 month, 2 month and 3 month. after surgery. Statistical test used to analyze these data included paired t-test, one way ANOVA. The results are as follows : 1. Probing depth was significanlly decreased in the two group and there were significant differences between groups(p<0.05). 2. Gingival recession was not significanlly increased in the two group and there were no significant differences between groups(p<0.05). 3. Loss of attachment was statistically decreased in the two group and there were no significant differences between groups(p<0.05). 4. Horizontal bone level was significanlly increased in the two group and there were significant differences between groups(p<0.05). On the basis of these results, chitoans resorbable membrane has similar potential to PLA/PLGA membrane in GTR for furcation defect.

Preparation and Mechnical Properties of Biodegradable Plastic Natural Fiber Composite (생분해성 플라스틱 천연Fiber 복합체의 물리적 특성)

  • Lee, Dong-Hyun;Kim, Sung-Tae;Kim, Dong-Gye;Kim, Sang-Gu;Park, Byung-Wok
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.79-79
    • /
    • 2011
  • 최근 플라스틱 제품의 사용후 폐기에서 발생 되는 환경적인 문제점들이 대두 되고 있는 가운데, 이러한 제품에 대한 친환경적인 재료 설계에 대한 요구가 거세지고 있는 실정으로 플라스틱 업계의 사활이 걸릴 정도의 중요한 문제로 부각되고 있다. 본 연구에서는 이러한 플라스틱 제품의 치명적인 환경적인 문제점을 극복하고자, Matrix 물질이 되는 플라스틱에서 부터 친 환경적인 생분해성 수지를 사용하면서, 물성의 강화제로써 천연물 유래의 여러 종류의 섬유를 사용하고자 하였다.가장 보편화된 생분해성 플라스틱인 지방족 폴리에스테르 계통의 생분해성 수지와 Polylactic acid에 대해 검토를 하였다. 지방족 폴리에스테르 의 경우는 기존 플라스틱 제품과 비교해서 유연하고, 신장율이 높고, PLA 대비 내열 사용한계 온도도 높아서 물성적인 측면에서 상당한 장점을 가지고는 있으나 가격이 매우 고가이므로, 기존 플라스틱을 대체하는 것에는 문제점이 있다. 반면 PLA의 경우 지방족 폴리에스테르 대비 절반 이하의 가격이고 기계적 강도 또한 매우 높기 때문에 기존의 플라스틱을 대체할 수 있는 가장 유력한 물질로 대두 되고 있으나, 사출물과 같은 충격이 요구되는 제품에 있어서는 PLA 고유의 약한 취성이 가장 큰 단점으로 지적되고 있다. 본 연구에서는 이러한 PLA를 기반으로 PLA의 장점이 기계적 강성을 유지하면서, 취성을 보완하기 위해 PBS를 혼합 할 수 있는 기술을 개발하였으며, 또한 원재료의 Cost를 줄이고, PBS 혼합에 따른 PLA의 기계적 강도 감소를 보완하기 위해 천연물 유래의 Wood fiber, Starch, Bamboo fiber, Cellulose fiber, Paper fiber 와 같은 각종 천연 Filler를 사용하여 기계적 기계적 강도 감소를 최소화 하였다.

  • PDF

High functional biodegradable card through annealing (어닐링을 통한 고기능성 생분해성 카드)

  • Sim, Jae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.280-286
    • /
    • 2020
  • Cards made from PVC and PET materials do not oxidize or decompose readily, so they are generally incinerated or landfilled after use and cause pollution problems, such as environmental hormones and combustion gases during incineration. In addition, there is a problem of environmental pollution because they are discarded as semi-permanent refuse without being decomposed at landfill. This study attempted to solve this problem using polylactic acid (PLA), which is a representative biodegradable material as a substitute material that can solve the issues with these cards. On the other hand, when the thin card core sheet is made from only PLA material, the physical properties of the material are insufficient, such as the low temperature impact strength, high temperature stability, and poor bending properties, so its use is limited. To solve this problem, the compositional ratio of PLA was reviewed, and the optimal biodegradable compound composition was determined through an examination of the compositions, such as crystallization nucleating agents, additives, and nano compound technology. The high functionalization as a biodegradable card was verified through a laminating process using annealing technology.

Clinical study of guided bone regeneration of extracted socket with PLA/PGA membrane and silk fibroin membrane (PLA/PGA 차폐막과 실크 피브로인 차폐막을 이용한 발치와의 골유도재생술의 비교연구)

  • Hwang, Woo-Jin;Jeong, Seong-Nyum;Kim, Yun-Sang;Pi, Sung-Hee;You, Hyung-Keun;Chung, Chong-Pyoung;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.2
    • /
    • pp.129-138
    • /
    • 2009
  • Purpose: This study was designed to compare the bond regeneratiom effects of treatment using silk fibroin membrane ( Nanogide-S$^{(R)}$ ) resorbable barrier with control group treated by polyactic acid / polylacticglycolic acid membrane(Biomesh$^{(R)}$ ) Methods: 44 severe bone loss on extraction socket from 44 patients were used in this study. In experimental group 22 sites of them were treated by silk fibrin membrane as and the other 22 sites were treated by polyactic acid/ polylacticglycolic acid membrane as a control group. Clinical parameters including recovered bone width, length and radiographic parameter of vertical length were evlauated at base line and 3 months after surgery. Results: 1) Severe bone width, length was significantlly decreased in two group. 2) Bone width, length was significantlly decreased in two group. 3) Decreased bone width, length and radiographic examination differences between group. Conclusions: On the basis of these results, silk fibrin resorbable membrane has similar bone regeneration ability to polyactic acid / polylacticglycolic acid membrane in guided bone regeneration for severe bone loss defect on extraction socket.

A Study for the Mechanical Properties in Scouring and Heat Treatment of PLA Woven Fabric (PLA직물의 정련 및 열처리 시 물성변화에 대한 연구)

  • Kim, Ji-Yeon;Park, Sung-Min;Kang, Suk-Hee;Park, Jeong-Young;Yeom, Jeong-Hyeon
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.108-108
    • /
    • 2011
  • PLA 즉 폴리유산섬유는 옥수수를 발효하여 글루코오스(포도당)상태를 만든 후 젖산(유산, Lactic acid)으로 만들고 이것을 탈수, 축합반응시켜 polylactic acid로 만든 것이다. 생분해성이 있으므로 저탄소, 녹색성장의 모토를 대변하는 소재라는 이점이 있다. 구조는 에스테르기의 반복단위를 가지는 소수성 섬유로 벤젠환은 없으나 그 외 구조는 폴리에스테르와 비슷하며, 에스테르기가 존재하므로 분산염료와 수소결합하여 염착된다. 그러나 PLA는 융점이 $170^{\circ}C$, Tg $57^{\circ}C$로 내열성이 낮아서 염색온도, 열처리온도, 다림질에 제약이 있으며, 알칼리에 약한 단점이 있다. 따라서 PLA섬유는 낮은 염착량, 내알칼리성, 염착온도 때문에 염색 및 후가공 단계에 많은 사전 실험을 통한 조건 설정이 필요한 까다로운 섬유이다. 본 연구에서는 (주)휴비스의 PLA원사로 제직한 직물(경사:DTY 75/72SD, 위사:DTY 100/72SD, 조직:DOBBY) 생지에 대하여 열처리 시 장력의 유무, 온도, 시간에 따른 폭의 변화를 측정하여 수축률을 알아보았다. 또한, PLA직물을 온도별로 정련한 후 열처리하여 인열강도 측정을 통해 최적 전처리 조건을 조사하였다. 실험결과, PLA생지를 무장력 상태에서 열처리 시 수축이 심하게 일어나고, 장력이 주어져도 열처리 온도에 따라 수축의 정도에 차이가 나타났다. 열처리 시간은 30, 60, 90, 120초로 주었으나 큰 편차는 없었고, 경사가 위사보다 수축 정도가 더 컸으며, $130^{\circ}C$에서는 전체적으로 수축이 심하였다. 생지의 정련에는 인산에스테르계 정련제와 약알칼리인 탄산나트륨으로 조액하여 60, 70, 80, $90^{\circ}C$에서 10분간 처리한 후, Lab. tenter(Mathis, LTE)를 이용하여 110, 120, $130^{\circ}C$에서 30, 60, 90, 120초간 열처리한 다음, KS K 0535 펜듈럼법에 의거하여 인열강도를 측정하였다. 그 결과, 상기 정련온도에서는 인열강도에 영향을 주지 않았으나, 열처리 온도가 $130^{\circ}C$일 때 현저한 강도의 저하를 나타내었다. 실험조건 하에서 가장 적절한 열처리 조건은 $110^{\circ}C$, 60초로 사료된다. 따라서 PLA의 약한 내열성과 내알칼리성 실험결과, 강도나 수축 등 물성변화가 일어나지 않도록 열처리 온도의 제어에 주의가 필요함을 확인할 수 있었다. 실제 섬유가공 작업현장에서는 일반적으로 열처리기가 $180^{\circ}C$이상의 고온으로 고정된 경우가 많은데, 작업자들에게 PLA소재에 대한 사전주의 및 공정변경에 대한 주지가 요구된다.

  • PDF

Particle loading as a design parameter for composite radiation shielding

  • Baumann, N.;Diaz, K. Marquez;Simmons-Potter, K.;Potter, B.G. Jr.;Bucay, J.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3855-3863
    • /
    • 2022
  • An evaluation of the radiation shielding performance of high-Z-particle-loaded polylactic acid (PLA) composite materials was pursued. Specimens were produced via fused deposition modeling (FDM) using copper-PLA, steel-PLA, and BaSO4-PLA composite filaments containing 82.7, 75.2, and 44.6 wt% particulate phase contents, respectively, and were tested under broad-band flash x-ray conditions at the Sandia National Laboratories HERMES III facility. The experimental results for the mass attenuation coefficients of the composites were found to be in good agreement with GEANT4 simulations carried out using the same exposure conditions and an atomistic mixture as a model for the composite materials. Further simulation studies, focusing on the Cu-PLA composite system, were used to explore a shield design parameter space (in this case, defined by Cu-particle loading and shield areal density) to assess performance under both high-energy photon and electron fluxes over an incident energy range of 0.5-15 MeV. Based on these results, a method is proposed that can assist in the visualization and isolation of shield parameter coordinate sets that optimize performance under targeted radiation characteristics (type, energy). For electron flux shielding, an empirical relationship was found between areal density (AD), electron energy (E), composition and performance. In cases where ${\frac{E}{AD}}{\geq}2MeV{\bullet}cm{\bullet}g^{-1}$, a shield composed of >85 wt% Cu results in optimal performance. In contrast, a shield composed of <10 wt% Cu is anticipated to perform best against electron irradiation when ${\frac{E}{AD}}<2MeV{\bullet}cm{\bullet}g^{-1}$.

Shielding Performance of PLA and Tungsten Mixture using Research Extruder (연구용 압출기를 활용한 PLA와 텅스텐 혼합물의 차폐 성능)

  • Do-Seong Kim;Tae-Hyung Kim;Myeong-Seong Yoon;Sang-Hyun Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.557-564
    • /
    • 2023
  • In this study, 3D printing technology was used to compensate for the shortcomings of the use of lead, which has proven to have excellent shielding performance, and to control unnecessary human exposure. 3D printers can implement three-dimensional shapes and can immediately apply individual ideas, which has great advantages in maintaining technology supplementation while reducing the cost and duration of prototyping. Among the various special 3D printers, the FDM method was adopted, and the filament used for output was manufactured using a research extruder by mixing two materials, PLA (Poly-Lactic-Acid) and tungsten. The purpose was to verify the validity through dose evaluation and to provide basic information on the production of chapezones of various materials. The mixed filament was implemented as a morphological shield. Filaments made of a research extruder by mixing PLA and tungsten were divided into 10 %, 20 %, 30 %, 40 %, and 50 % according to the tungsten content ratio. Through the process of 3D Modeling, STL File storage, G-code generation, and output, 10 cm × 10 cm × 0.5 cm was manufactured, respectively, and dose and shielding ability were evaluated under the conditions of tube voltages of 60 kVp, 80 kVp, 100 kVp, 120 kVp, and tube currents of 20 mAs and 40 mAs.