DOI QR코드

DOI QR Code

Fused Deposition Modeling of Iron-alloy using Carrier Composition

  • Harshada R. Chothe (Department of Materials Engineering and Convergence Technology, RIGET, Gyeongsang National University) ;
  • Jin Hwan Lim (Department of Materials Engineering and Convergence Technology, RIGET, Gyeongsang National University) ;
  • Jung Gi Kim (Department of Materials Engineering and Convergence Technology, RIGET, Gyeongsang National University) ;
  • Taekyung Lee (School of Mechanical Engineering, Pusan National University) ;
  • Taehyun Nam (Department of Materials Engineering and Convergence Technology, RIGET, Gyeongsang National University) ;
  • Jeong Seok Oh (Department of Materials Engineering and Convergence Technology, RIGET, Gyeongsang National University)
  • Received : 2023.02.27
  • Accepted : 2023.03.13
  • Published : 2023.03.31

Abstract

Additive manufacturing (AM) or three-dimensional (3D) printing of metals has been drawing significant attention due to its reliability, usefulness, and low cost with rapid prototyping. Among the various AM technologies, fused deposition modeling (FDM) or fused filament fabrication is receiving much interest because of its simple manufacturing processing, low material waste, and cost-effective equipment. FDM technology uses metal-filled polymer filaments for 3D printing, followed by debinding and sintering to fabricate complex metal parts. An efficient binder is essential for producing polymer filaments and the thermal post-processing of printed objects. This study involved an in-depth investigation of and a fabrication route for a novel multi-component binder system with steel alloy powder (45 vol.%) ranging from filament fabrication and 3D printing to debinding and sintering. The binder system consisted of polyvinyl pyrrolidone (PVP) as a binder and thermoplastic polyurethane (TPU) and polylactic acid (PLA) as a carrier. The PVP binder held the metal components tightly by maintaining their stoichiometry, and the TPU and PLA in the ratio of 9:1 provided flexibility, stiffness, and strength to the filament for 3D printing. The efficacy of the binder system was examined by fabricating 3D-printed cubic structures. The results revealed that the thermal debinding and sintering processes effectively removed the binder/carrier from the cubic structures, resulting in isotropic shrinkage of approximately 15.8% in all directions. The scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) patterns displayed the microstructure behavior, phase transition, and elemental composition of the 3D cubic structure.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (2020R1A4A3079417) and the Development Fund Foundation of Gyeongsang National University, 2020. Special thanks to Dr. Ankit Rathi for contributing his valuable time and efforts to this work.

References

  1. M. Salehi, S. Maleksaeedi, M. L. S. Nai, and M. Gupta, "Towards additive manufacturing of magnesium alloys through integration of binderless 3D printing and rapid microwave sintering", Addit. Manuf., 29, 100790 (2019).
  2. T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, "Additive manufacturing (3D printing): A review of materials, methods, applications and challenges", Compos. B. Eng., 143, 172 (2018).
  3. M. Seleznev and J. D. Roy-Mayhew, "Bi-metal composite material for plastic injection molding tooling applications via fused filament fabrication process", Addit. Manuf., 48, 102375 (2021).
  4. W. S. Tan, M. A. B. Juhari, Q. Shi, S. Chen, D. Campolo, and J. Song, "Development of a new additive manufacturing platform for direct freeform 3D printing of intrinsically curved flexible membranes", Addit. Manuf., 36, 101563 (2020).
  5. F. Pignatelli and G. Percoco, "An application- and market-oriented review on large format additive manufacturing, focusing on polymer pellet-based 3D printing", Addit. Manuf., 7, 1363 (2022).
  6. M. Attaran, "The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing", Bus. Horiz., 60, 677 (2017).
  7. M. Mukhtarkhanov, A. Perveen, and D. Talamona, "Application of Stereolithography Based 3D Printing Technology in Investment Casting", Micromachines, 11, 946 (2020).
  8. A. Jandyal, I. Chaturvedi, I. Wazir, A. Raina, and M. I. U. Haq, "3D printing-A review of processes, materials and applications in industry 4.0", Sust. Oper. and Comp., 3, 33 (2022).
  9. M. Agarwala, D. Bourell, J. Beaman, H. Marcus, and J. Barlow, "Post-processing of selective laser sintered metal parts", Rap. Prot. Jou., 1, 36 (1995).
  10. T. K. Sinha, H. R. Chothe, J. H. Lim, J. G. Kim, T. Lee, T. Nam, and J. S. Oh, "Fabricating Efficient and Biocompatible Filament for Material Extrusion-Based Low-Cost Additive Manufacturing: A Case Study with Steel", J. Mater. Eng. Perform., 32, 1966 (2022).
  11. D. Notzel, R. Eickhoff, and T. Hanemann, "Fused filament fabrication of small ceramic components", Mater., 11, 1463 (2018).
  12. G. Wu, N.A. Langrana, R. Sadanji, and S. Danforth, "Solid freeform fabrication of metal components using fused deposition of metals", Mater. Des., 23, 97 (2002).
  13. A. I. Nurhudan, S. Supriadi, Y. Whulanza, and A. S. Saragih, A. S., "Additive manufacturing of metallic based on extrusion process: A review", J. Manuf. Process., 66, 228 (2021).
  14. Y. Zhang, L. Poli, E. Garratt, S. Foster, and A. Roch, "Utilizing fused filament fabrication for printing iron cores for electrical devices", 3D Print. Addit. Manuf., 7, 279 (2020).
  15. M. A. Wagner, A. Hadian, T. Sebastian, F. Clemens, T. Schweizer, M. Rodriguez-Arbaizar, E. Carreno-Morelli, and R. Spolenak, "Fused filament fabrication of stainless steel structures-from binder development to sintered properties", Addit. Manuf., 49, 102472 (2022).
  16. P. Singh, V. K. Balla, A. Gokce, S. V. Atre, and K. H. Kate, "Additive manufacturing of Ti-6Al-4V alloy by metal fused filament fabrication (MF3): Producing parts comparable to that of metal injection molding", Prog. Addit. Manuf., 6, 593 (2021).
  17. F. Gosselin, U.S. Patent 5069714 (1991).
  18. T. K. Sinha, J. H. Lim, H. R. Chothe, J. G. Kim, T. Nam, T. Lee, and J. S. Oh, "Polyvinyl pyrrolidone (PVP) as an efficient and biocompatible binder for metal alloy processing: A case study with Ti-20Zr-11Nb-3Sn", J. Appl. Polym. Sci., 139, e52396 (2022).
  19. S. Cano, J. Gonzalez-Gutierrez, J. Sapkota, M. Spoerk, F. Arbeiter, S. Schuschnigg, C. Holzer, and C. Kukla, "Additive manufacturing of zirconia parts by fused filament fabrication and solvent debinding: Selection of binder formulation", Addit. Manuf., 26, 117 (2019).
  20. A. Rathi, S. Kundalwal, S. Singh, and A. Kumar, "Adhesive and viscoelastic response of MWCNT/ZrO2 hybrid epoxy nanocomposites", J. Mech. Mater. Struct., 16, 281 (2021).
  21. J. Joseph, J. Moon, T. W. Kong, D. H. Kim, and J. S. Oh, "Pot life assessment and mechanical property of fast curing polyurethane developed with eco-friendly pre-polymer", Elast. Compos., 55, 13 (2020).
  22. Y. Kim, H. J. Yoon, S. Y. Lee, J. H. Lee, S. B. Moon, J. M. Nam, K. Jung, and J. J. Wie, "Analysis of Mechanical Properties in Thermoplastic Polyurethane-Microcrystalline Cellulose Composites", Polym. J., 44, 776 (2020).
  23. K. Kim, J. Park, J.-h. Suh, M. Kim, Y. Jeong, and I. Park, "3D printing of multiaxial force sensors using carbon nanotube (CNT)/thermoplastic polyurethane (TPU) filaments", Sens. Actuator A Phys., 263, 493 (2017).
  24. A. Zur, P. Zur, P. Michalski, and A. Baier, "Preliminary Study on Mechanical Aspects of 3D-Printed PLA-TPU Composites", J. Mater., 15, 2364 (2022).
  25. L. Rueschhoff, W. Costakis, M. Michie, J. Youngblood, and R. Trice, "Additive manufacturing of dense ceramic parts via direct ink writing of aqueous alumina suspensions", Int. J. Appl. Ceram. Technol., 13, 821 (2016).
  26. K. M. Koczkur, S. Mourdikoudis, L. Polavarapu, and S. E. Skrabalak, "Polyvinylpyrrolidone (PVP) in nanoparticle synthesis", Dalton Trans., 44, 17883 (2015).
  27. J. Tian, C. Li, and G. Xian, "Reciprocating friction and wear performances of nanometer sized-TiO2 filled epoxy composites", Polym. Compos., 42, 2061 (2021).
  28. M. Kurakula and G.K. Rao, "Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition", J. Drug. Deliv. Sci. Technol., 60, 102046 (2020).
  29. C. Xiao, Q. Ni, H. Chen, and L. Guo, "Effect of polyvinylpyrrolidone on rheology of aqueous SiC suspensions dispersed with poly(aspartic acid)", Colloids Surf. A: Physicochem. Eng. Asp., 399, 108 (2012).
  30. N. Dixit and P. K. Jain, "Effect of Fused Filament Fabrication Process Parameters on Compressive Strength of Thermoplastic Polyurethane and Polylactic Acid Lattice Structures", J. Mater. Eng. Perform., 31, 5973 (2022).
  31. I. Antoniac, D. Popescu, A. Zapciu, A. Antoniac, F. Miculescu, and H. Moldovan, "Magnesium filled polylactic acid (PLA) material for filament based 3D printing", J. Mater., 12, 719 (2019).
  32. F. Peng, B.D. Vogt, and M. Cakmak, "Complex flow and temperature history during melt extrusion in material extrusion additive manufacturing", Addit. Manuf., 22, 197 (2018).
  33. Y. Thompson, J. Gonzalez-Gutierrez, C. Kukla, and P. Felfer, "Fused filament fabrication, debinding and sintering as a low cost additive manufacturing method of 316L stainless steel", Addit. Manuf., 30, 100861 (2019).
  34. Y. Zhang, S. Bai, M. Riede, E. Garratt, and A. Roch, "A comprehensive study on Fused Filament Fabrication of Ti-6Al-4V structures", Addit. Manuf., 34, 101256 (2020).
  35. Y. Shengjie, Y. Lam, S. Yu, and K. Tam, "Two-dimensional simulation of mass transport in polymer removal from a powder injection molding compact by thermal debinding", Mater. Res., 16, 2436 (2001).
  36. Y. Shengjie, Y. Lam, S. Yu, and K. Tam, "Thermal debinding modeling of mass transport and deformation in powder-injection molding compact", Metall. Mater. Trans., 33, 477 (2002).
  37. M. A. Caminero, A. Romero, J. M. Chacon, P. J. Nunez, E. Garcia-Plaza, and G. P. Rodriguez, "Additive manufacturing of 316L stainless-steel structures using fused filament fabrication technology: mechanical and geometric properties", Rapid Prototyp. J., 27, 583 (2021).
  38. M. Ziaee and N. B. Crane, "Binder jetting: A review of process, materials, and methods", Addit. Manuf., 28, 781 (2019).
  39. N. Kladovasilakis, P. Charalampous, I. Kostavelis, D. Tzetzis, and D. Tzovaras, "Impact of metal additive manufacturing parameters on the powder bed fusion and direct energy deposition processes: A comprehensive review", Prog. Addit. Manuf., 6, 349 (2021).
  40. E. Hryha and J. Wendel, "Effect of heating rate and process atmosphere on the thermodynamics and kinetics of the sintering of pre-alloyed water-atomized powder metallurgy steels", J. Am. Ceram. Soc., 102, 748 (2019).
  41. X. Wang, T. Laoui, J. Bonse, J.-P. Kruth, B. Lauwers, and L. Froyen, "Direct selective laser sintering of hard metal powders: experimental study and simulation", Int. J. Adv. Manuf. Technol., 19, 351 (2002).
  42. S. Y. Kim, D.-H. Yeo, H.-S. Shin, B. S. Kim, H. C. Kwon, and H. G. Yoon, "Effects of debinding process on properties of sintered AlN substrate", Ceram, 45, 17930 (2019).
  43. D. Wang, L. Liu, G. Deng, C. Deng, Y. Bai, Y. Yang, W. Wu, J. Chen, Y. Liu, and Y. Wang, "Recent progress on additive manufacturing of multi-material structures with laser powder bed fusion", Virtual Phys. Prototyp., 17, 329 (2022).
  44. J. Yang, X. An, L. Liu, S. Tang, H. Cao, Q. Xu, and H. Liu, "Cellulose, hemicellulose, lignin, and their derivatives as multi-components of bio-based feedstocks for 3D printing", Carbohydr. Polym., 250, 116881 (2020).
  45. Z. Guo, Y. Wang, S. Li, J. Pan, D. Zhu, C. Yang, L. Pan, H. Tian, and D. Wang, "Reductive roasting mechanism of copper slag and nickel laterite for Fe-Ni-Cu alloy production", J. Mater. Res. Technol., 9, 7602 (2020).
  46. Y. Xue, Z. Guo, D. Zhu, J. Pan, Y. Wang, and R. Zhan, "Efficient utilization of copper slag in an innovative sintering process for Fe-Ni-Cu alloy preparation and valuable elements recovery", J. Mater. Res. Technol., 18, 3115 (2022).
  47. J. Zhang and D. J. Young, "Contributions of carbon permeation and graphite nucleation to the austenite dusting reaction: A study of model Fe-Ni-Cu alloys", Corros. Sci., 56, 184 (2012).