• 제목/요약/키워드: PLA(Polylactic acid)

검색결과 86건 처리시간 0.031초

FFF 방식으로 제작된 PLA의 열화에 따른 선형탄성 및 초탄성 모델의 비교에 관한 연구 (A Comparative Study of the Linear-elastic and Hyperelastic Models for Degradation of PLA Prepared using Fused Filament Fabrication)

  • 최나연;신병철;장성욱
    • 한국기계가공학회지
    • /
    • 제19권3호
    • /
    • pp.1-7
    • /
    • 2020
  • Fused filament fabrication (FFF) is a process extruding and stacking materials. PLA materials are one of the most frequently used materials for FFF method of 3D printing. Polylactic acid (PLA)-based materials are among the most widely used materials for FFF-based three-dimensional (3D) printing. PLA is an eco-friendly material made using starch extracted from corn, as opposed to plastic made using conventional petroleum resin; PLA-based materials are used in various fields, such as packaging, aerospace, and medicines. However, it is important to analyze the mechanical properties of theses materials, such as elastic strength, before using them as structural materials. In this study, the reliability of PLA-based materials is assessed through an analysis of the changes in the linear elasticity of these materials under thermal degradation by applying a hyperelastic analytical model.

Three-dimensional printing of temporary crowns with polylactic acid polymer using the fused deposition modeling technique: a case series

  • Eun-Kyong Kim;Eun Young Park;Sohee Kang
    • Journal of Yeungnam Medical Science
    • /
    • 제40권3호
    • /
    • pp.302-307
    • /
    • 2023
  • With recent developments in digital dentistry, research on techniques and materials for three-dimensional (3D) printing is actively underway. We report the clinical applications and outcomes of 3D printing of temporary crowns fabricated with polylactic acid (PLA) using a fused deposition modeling (FDM) printer. Five participants were recruited from among patients scheduled to be treated with a single full-coverage crown at a dental clinic in a university medical center from June to August 2022. We used 3D-printed crowns fabricated with PLA using an FDM printer as temporary crowns and were assessed for discomfort, fracture, and dislodging. The 3D-printed temporary crowns were maintained without fracture, dislodging, or discomfort until the permanent prosthesis was ready. The average time required for printing the temporary crowns was approximately 7 minutes. The 3D printing of temporary crowns with PLA using an FDM printer is a convenient process for dentists. However, these crowns have some limitations, such as rough surface texture and translucency; therefore, the 3D printing process should be improved to produce better prostheses.

Bioactive Polyglycolic Acid (PGA) or Polylactic Acid (PLA) Polymers on Extracellular Matrix Mineralization in Osteoblast-like Mc3T3-E1 Cells

  • Cho, Young-Eun;Kim, Hye-Jin;Kim, Yong-Ha;Choi, Jae-Won;Kim, Youn-Jung;Kim, Gab-Joong;Kim, Jin-Su;Choi, Sik-Young;Kwun, In-Sook
    • Nutritional Sciences
    • /
    • 제9권4호
    • /
    • pp.233-239
    • /
    • 2006
  • Porous matrices of bioactive polymers such as polyglycolic acid (PGA) or polylactic acid (PLA) can be used as scaffolds in bone tissue growth during bone repair process. These polymers are highly porous and serve as a template for the growth and organization of new bone tissues. We evaluated the effect of PGA and PLA polymers on osteoblastic MC3T3-E1 cell extracellular mineralization. MC3T3-E1 cells were cultured in a time-dependent manner -1, 15, 25d as appropriate - for the period of bone formation stages in one of the five culture circumstances, such as normal osteogenic differentiation medium, PGA-plated, fetal bovine serum (FBS)-plated, PGA/FBS-coplated, and PLA-plated For the evaluation of bone formation, minerals (Ca, Mg, Mn) and alkaline phosphatase activity, a marker for osteoblast differentiation, were measured Alizarin Red staining was used for the measurement of extracellular matrix Ca deposit During the culture period, PGA-plated one was reabsorbed into the medium more easily and faster than the PLA-plated one. At day 15, at the middle stage of bone formation, cellular Ca and Mg levels showed higher tendency in PGA- or PLA-plated treatments compared to non-plated control and at day 25, at the early late stage of bone formation, all three cellular Ca, Mg or Mn levels showed higher tendency as in order of PGA-related treatments and PLA-plated treatments, compared to control even without significance. Medium Ca, Mg or Mn levels didn't show any consistent tendency. Cellular ALP activity was higher in the PGA- or PLA-plated treatments compare to normal osteogenic medium treatment PGA-plated and PGA/FBS-plated treatments showed better Ca deposits than other treatments by measurement of Alizarin Red staining, although PLA-plated treatment also showed reasonable Ca deposit. The results of the present study suggest that biodegradable material, PGA and also with less extent for PLA, can be used as a biomaterial for better extracellular matrix mineralization in osteoblastic MC3T3-E1 cells.

Effect of Enzymatic Hydrolysis on Polylactic Acid Fabrics by Lipases from Different Origins

  • Lee, So-Hee;Song, Wha-Soon
    • 한국의류학회지
    • /
    • 제36권6호
    • /
    • pp.653-662
    • /
    • 2012
  • This study measured the effect of general pre-treatment on PLA fabrics to confirm the benefits of enzymatic processing on PLA fabrics in the textile industry as well as evaluated the hydrolytic activities of three lipases. The effects of lipase hydrolysis were analyzed through moisture regain, dyeing ability, tensile strength, and surface morphology. As a result, PLA fibers were easily damaged by a low concentration of sodium hydroxide and a low treatment temperature. The optimal treatment conditions of Lipase from Candida cylindracea were pH 8.0, $40^{\circ}C$, and 1,000 U. The optimal treatment conditions for Lipase from Candida rugosa were pH 7.2, $37^{\circ}C$, and 1,000 U. The optimal treatment conditions for Lipase from Porcine pancreas were pH 8.0, $37^{\circ}C$, and 2,000 U. The moisture regain and dyeing ability of PLA fabrics increased and the tensile strength of PLA fabrics decreased. The results of surface morphology revealed that there were some cracks due to hydrolysis on the surface of the fiber.

나노셀룰로오스 분말 개발과 폴리젖산 내 핵제 적용 연구 (Development and Application of Cellulose Nanofiber Powder as a Nucleating Agent in Polylactic Acid)

  • 주상현;이아정;신영은;박태훈
    • 한국포장학회지
    • /
    • 제29권1호
    • /
    • pp.51-57
    • /
    • 2023
  • 이 연구에서는 고압 균질기를 통해 제작된 CNF 수 분산액을 PLA에 적용시키는데 있어 비용과 생산 효율성을 고려하여 동결 건조 방식이 아닌 오븐 건조를 통해 수분을 제거한 ODCNF를 제조하였다. 건조 후 고형화된 CNF 분말을 생분해성 고분자인 PLA에 접목시켜 압출, 사출 공정에서 발생하는 전단응력으로 재분산을 유도하였고, 성공적으로 시편이 만들어졌다. 제작된 시편에 대하여 진행된 전계방사 전자현미경 측정을 통해 셀룰로오스 입자가 PLA 매트릭스 내에 함침되어 있는 것을 확인하였다. 또한 시차주사열량계 측정에서 ODCNF가 PLA에 적용되었을 때 결정화도 상승과 냉 결정화 온도가 앞당겨지는 것을 확인하였다. 그리고 냉각 과정에서 결정이 생성되는 것을 통해 실제 생산 공정에 적용할 경우, 친환경 핵제로써 역할을 수행할 수 있을 것으로 판단하였다. 추가적으로 유변물성 측정기를 통해 첨가된 ODCNF가 PLA의 점도를 과도하게 증가시키지 않아 기존 공정 조건에 그대로 적용할 수 있음을 확인하였고, 이는 제작된 시편을 통해서도 알 수 있었다. 동적 점탄성 특성에서는 첨가된 ODCNF 입자의 필러 효과와 향상된 결정화도로 인해 유리상과 고무상에서 모두 저장 탄성율의 비율이 PLA에 비해 높게 유지되는 것으로 밝혀졌다. 이러한 연구결과를 바탕으로 대량 생산이 가능하고, 생산단가를 낮춘 ODCNF를 이용하여 CNF/PLA 기반의 100% 생분해성 복합재 개발이 가능할 것으로 기대된다.

UV-curing Behaviors and Mechanical Properties of UV-cured Polylactic Acid (PLA)

  • Lee, Seung-Woo;Park, Ji-Won;Park, Cho-Hee;Kim, Hyun-Joong;Eom, Young-Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • 제41권2호
    • /
    • pp.134-140
    • /
    • 2013
  • UV curing was introduced via a chemical treatment by adding small amounts of a hexafunctional acrylic monomer and a photoinitiator to improve the mechanical properties of PLA. This study also employed a semi-interpenetrated structured polymer network through the process of UV-curing. The UV curing behaviors were investigated using FTIR-ATR spectroscopy and gel fraction determination. Also, the tensile strength was investigated with different hexafunctional acrylic monomer contents and UV doses. The results showed that the crosslinking of UV-induced chemically treated PLA started at a low content of hexafunctional acrylic monomer, resulting in a significant improvement of the mechanical properties compared to those of neat PLA due to crosslinking.

PLA/CNT 복합재료의 결정화 특성 및 가수분해에 미치는 CNT 영향에 대한 연구 (A Study on the Effect of CNT on Crystallization Kinetics and Hydrolytic Degradation of PKA/CNT Composite)

  • 이미현;김성하;김시환;박종규;이우일
    • Composites Research
    • /
    • 제24권4호
    • /
    • pp.5-10
    • /
    • 2011
  • 환경오염이 나날이 증가함에 따라 바이오 재료에 대한 관심이 커지고 있다. 본 연구에서는 생분해성 열가소성 수지인 폴리 유산 (PLA)을 기지재료로 하고 탄소나노튜브 (CNT)를 나노 filler로 사용하여 압출 및 사출공정을 통하여 복합재료를 제작하였다. 시편의 결정화도를 변화시키기 위하여 어닐링 시간에 변화를 주어 처리하였다. PLA의 결정화 특성은 시차주사열량계 (DSC)를 통하여 평가하였고, 적당한 양의 CNT가 PLA의 결정화 속도를 향상시킨 것을 확인할 수 있었다. 그 외에 PLA/CNT 복합재료의 가수분해 속도는 순수 PLA에 비하여 빠르지만 PLA/CNT 복합재료의 결정화도가 증가함에 따라 가수분해 속도가 늦어지는 것을 확인할 수 있었다. 이것은 가수분해가 PLA/CNT의 계면에서 쉽게 일어나고 결정화도가 높아짐에 따라 분자 구조가 치밀해지기 때문인 것으로 판단 된다.

Polylactic Acid Coating Affects the Ring Crush Strength of Linerboards

  • Lee, Jun-Ho;Rhim, Jong-Whan
    • 펄프종이기술
    • /
    • 제38권5호
    • /
    • pp.54-59
    • /
    • 2006
  • Paperboards used for linerboard of corrugated fiberboard box were coated with different concentrations of polylactic acid (PLA) solution and the effects of harsh environmental conditions such as high humidity and temperature (96% RH at $30^{\circ}C$ for up to 5 days), and freeze-thaw ($-20^{\circ}C$ for a day and then thaw at room temperature for 30 min) conditions on the ring crush (RC) strength of the boards were investigated. One to five percent PLA solutions were coated onto SC manila linerboard ($20{\times}27cm$) using a No. 20 wire bar coater and the ring crush strength was measured using a computer-controlled Advanced Universal Testing System in accordance with TAPPI Test Method T 822 om-93. The RC strength increased significantly when the concentration of coating solution increased and appreciable changes were found when the concentration increased from 0 to 2% (P<0.05). Similar pattern of results was found after 5-day storage at $30^{\circ}C$ and 96% RH. Although such highly humid condition increased moisture content in the samples up to 3.95 from 0.97 times, the RC strength decreased in the range from 29.9 to 48.5%. The freeze-thaw treatment increased the moisture content only up to 1.27% and the reduction in the RC strength ranged from 21.1 to 28.1 %. The results were promising: the samples coated with 5% PLA solution showed 29.9% reduction in the RC strength while that of control was 48.5% during highly humid condition stated above.