• Title/Summary/Keyword: PL spectra

Search Result 372, Processing Time 0.024 seconds

Laser Ablation of a ZnO:P2O5 Target under the Presence of a Transverse Magnetic Field

  • Alauddin, Md.;Park, Jin-Jae;Gwak, Doc-Yong;Song, Jae-Kyu;Park, Seung-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.798-802
    • /
    • 2010
  • From time-resolved optical emission spectra, we have investigated the effects of a transverse magnetic field on the expansion of a plasma plume produced by laser ablation of a ZnO:$P_2O_5$ ceramic target in oxygen active atmosphere. The emission spectra of $Zn^{+*}$, $P^{+*}$, and $Zn^*$ neutrals in the presence of magnetic field turn out to be considerably different from those without magnetic field. The characteristics of the deposited films grown on amorphous fused silica substrates by pulsed laser deposition (PLD) are examined by analyzing their photoluminescence (PL), X-ray diffraction (XRD), and UV-visible spectra.

Preparation and Luminescent Properties of GdOBr:Ce Blue Phosphors for FED (FED용 GdOBr:Ce 청색 형광체의 제조 및 발광특성)

  • Lee, Jun;Park, Joung-Kyu;Han, Cheong-Hwa;Park, Hee-Dong;Yun, Sock-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.3
    • /
    • pp.240-244
    • /
    • 2002
  • The GdOBr:Ce phosphor were prepared by solid state reaction using starting chemicals of $Gd_2O_3,\;CeO_2\;and\;NH_4Br$. Under 370nm UV excitation, GdOBr:Ce phosphors showed blue emission band with a spectral range of 410∼430nm. The maximum photoluminescence(PL) emission intensity was observed at 2mol% Ce content. In order to look for feasibility of application for low voltage filed emission display, cathodoluminescence(CL) of GdOBr:Ce phosphors were measured. CL emission spectra was found to be in the range of 410∼430nm, which is the same as PL spectra. The phosphors with 1mol% Ce concentration showed the maximum CL emission intensity. For the comparison of degradation property of the prepared phosphors with commercial ones, the electron beam was applied for 10min. From the result, GdOBr:Ce could be used as a blue phosphor for FED.

Photoluminescence of ZnSe/CdSe/ZnSe Single Quantum Well (ZnSe/CdSe/ZnSe 단일양자우물의 광발광 특성)

  • Park, J.G.;O, Byung-Sung;Yu, Y.M.;Yoon, M.Y.;Kim, D.J.;Choi, Y.D.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.3
    • /
    • pp.192-196
    • /
    • 2007
  • ZnSe/CdSe/ZnSe single quantum wells with different well thickness were grown by hot wall epitaxy. The quantum well thicknesses were measured by TEM. The critical thickness of single quantum well layer was found to be about $9{\AA}$ from the intensities and the full-width at half maximum of photoluminescence(PL) spectra. When the thickness of quantum wells was less than the critical thickness, the Stoke's shift was confirmed from the comparison between PL and photoluminescence excitation spectra, and it may be due to the exciton binding energy. The PL peak energy dependence on the quantum well thickness was coincident with the theoretical values.

Effects of Sputter Deposition Sequence and Sulfurization Process of Cu, Zn, Sn on Properties of Cu2ZnSnS4 Solar Cell Material (Cu, Zn, Sn의 스퍼터링 적층방법과 황화 열처리공정이 Cu2ZnSnS4 태양전지재료 특성에 미치는 효과)

  • Park, Nam-Kyu;Arepalli, Vinaya Kumar;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.23 no.6
    • /
    • pp.304-308
    • /
    • 2013
  • The effect of a sputter deposition sequence of Cu, Zn, and Sn metal layers on the properties of $Cu_2ZnSnS_4$ (CZTS) was systematically studied for solar cell applications. The set of Cu/Sn/Zn/Cu multi metal films was deposited on a Mo/$SiO_2$/Si wafer using dc sputtering. CZTS films were prepared through a sulfurization process of the Cu/Sn/Zn/Cu metal layers at $500^{\circ}C$ in a $H_2S$ gas environment. $H_2S$ (0.1%) gas of 200 standard cubic centimeters per minute was supplied in the cold-wall sulfurization reactor. The metal film prepared by one-cycle deposition of Cu(360 nm)/Sn(400 nm)/Zn(400 nm)/Cu(440 nm) had a relatively rough surface due to a well-developed columnar structure growth. A dense and smooth metal surface was achieved for two- or three-cycle deposition of Cu/Sn/Zn/Cu, in which each metal layer thickness was decreased to 200 nm. Moreover, the three-cycle deposition sample showed the best CZTS kesterite structures after 5 hr sulfurization treatment. The two- and three-cycle Cu/Sn/Zn/Cu samples showed high-efficient photoluminescence (PL) spectra after a 3 hr sulfurization treatment, wheres the one-cycle sample yielded poor PL efficiency. The PL spectra of the three-cycle sample showed a broad peak in the range of 700-1000 nm, peaked at 870 nm (1.425 eV). This result is in good agreement with the reported bandgap energy of CZTS.

Improved Luminescent Characterization and Synthesis of InP/ZnS Quantum Dot with High-Stability Precursor (고 안정성 전구체를 사용한 InP/ZnS 반도체 나노입자 합성 및 발광 특성 향상)

  • Lee, Eun-Jin;Moon, Jong-Woo;Kim, Yang-Do;Shin, Pyung-Woo;Kim, Young-Kuk
    • Journal of Powder Materials
    • /
    • v.22 no.6
    • /
    • pp.385-390
    • /
    • 2015
  • We report a synthesis of non-toxic InP nanocrystals using non-pyrolytic precursors instead of pyrolytic and unstable tris(trimethylsilyl)phosphine, a popular precursor for synthesis of InP nanocrystals. In this study, InP nanocrystals are successfully synthesized using hexaethyl phosphorous triamide (HPT) and the synthesized InP nanocrystals showed a broad and weak photoluminescence (PL) spectrum. As synthesized InP nanocrystals are subjected to further surface modification process to enhance their stability and photoluminescence. Surface modification of InP nanocrystals is done at $230^{\circ}C$ using 1-dodecanethiol, zinc acetate and fatty acid as sources of ZnS shell. After surface modification, the synthesized InP/ZnS nanocrystals show intense PL spectra centered at the emission wavelength 612 nm through 633 nm. The synthesized InP/ZnS core/shell structure is confirmed with X-ray diffraction (XRD) and Inductively Coupled Plasma - Atomic Emission Spectrometer (ICP-AES). After surface modification, InP/ZnS nanocrystals having narrow particle size distribution are observed by Field Emission Transmission Electron Microscope (FE-TEM). In contrast to uncapped InP nanocrystals, InP/ZnS nanocrystals treated with a newly developed surface modified procedure show highly enhanced PL spectra with quantum yield of 47%.

The Effect of Precursor Concentration on ZnO Nanorod Grown by Low-temperature Aqueous Solution Method (저온수열합성방법에 의해 성장한 ZnO 나노로드의 전구체 몰농도 변화에 따른 특성 연구)

  • Mun, D.H.;Ha, J.S.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.1
    • /
    • pp.33-37
    • /
    • 2013
  • In this research, we investigated the effect of mole concentration of precursor on morphological, structural and optical properties of ZnO nanorods. ZnO nanorods were hydrothermally grown on c-plane sapphire substrates in aqueous solution which contains zinc nitrate hexahydrate and hexamethylenetetramine at 90oC in the precursor range of 0.01 M to 0.025 M. With the increase of mole concentration, length and diameter of ZnO nanorods increased. In all the conditions, the growth direction of rods was longitudinally c-axis direction. From the strong emission peak at 380 nm of PL spectra at room temperature, we could confirm that the crystal quality of ZnO nanorods is good to emit radiative recombination spectra.

Preparation and Unequivocal Identification of Chromophores-Substituted Carbosilane Dendrimers up to 7th Generations

  • Kim, Chung-Kyun;Kim, Hyo-Jung;Oh, Myeong-Jin;Hong, Jang-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.873-881
    • /
    • 2009
  • Bis(phenylethynyl)dimethylsilane is branched by the hydrosilation of the phenylethynyl group with dichloromethylsilane, and then the resulting chlorosilane is reacted with lithium phenylacetylide to give the $1^{st}$ generation. The same hydrosilation and alkynylation are repeated to obtain the $7^{th}$ generation. In addition peripheral Si-Cl moiety of the seven kind generation dendrimers are reacted with alcoholic moiety of 9-hydroxymethylanthracene and 2-(2-hydroxyphenyl)benzoxazole group in the presence of TMEDA. Then three kinds of carbosilane dendrimers are prepared from the $1^{st}$ to the $7^{th}$ generations, the $7^{th}$ generation of each dendrimer has 256 phenylethynyl, 256 9-anthracenylmethoxy, or 128 2-(2-phenoxy)benzoxazole groups. Each synthesized dendrimer is unequivocally characterized by $^1H\;and\;^{13}C\;NMR$, elemental analysis, MALDI-MS, GPC, and PL (photoluminescence). Characteristically PDI (Polydisperse Index) values of the dendrimers’ peak in GPC are in the range of $1.00{\sim}1.07$, which indicates that each generation of carbosilane is in unified distribution. PL spectra of phenylethynyl and 9- anthracenemethoxy group substituted dendrimers show no significant change with increasing the generation from the $1^{st}$ to the $7^{th}$. However, the PL spectra of 2-(2-phenoxy)benzoxazole group substituted dendrimers show a blue-shift trend with increasing the generation from the $1^{st}$ to the $7^{th}$.

A Study on Transmuted Impurity Atoms Formed in Neutron-Irradiated ZnO Thin Films (중성자 조사한 ZnO 박막에 생성된 핵전환 불순물들에 대한 연구)

  • Kim, Sang-Sik;Seon, Gyu-Tae;Park, Gwang-Su;Im, Gi-Ju;Seong, Man-Yeong;Lee, Bu-Hyeong;Jo, Un-Gap;Han, Hyeon-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.7
    • /
    • pp.298-304
    • /
    • 2002
  • Transmuted impurity atoms formed in neutron-irradiated ZnO thin films were theoretically identified first and then experimentally confirmed by photoluminescence (PL). ZnO thin films grown by plasma-assisted molecular beam epitaxy were irradiated by neutron beam at room temperature. The ZnO films consist of eight constituent (Zn and O) isotropes, of which four are transmutable by neutron-irradiation; $^{64}$ , $^{68}$ Zn, $^{70}$ Zn and $^{18}$ O were expected to transmute into $^{65}$ Cu, $^{69}$ Ga, $^{71}$ Ga, and $^{19}$ F, respectively. The concentrations of these transmuted atoms were estimated in this study by considering natural abundance, neutron fluence and neutron cross section. The neutron-irradiated ZnO thin films were characterized by PL. In the PL spectra of the ZnO thin films, the Cu-related PL peaks were seen, but the Ga- or F-associated PL peaks were absent. This observation confirmed the existence of $^{65}$ Cu in the ZnO, but it could not do the formation of the other two. In this paper, the emission mechanism of Cu impurities is described and the reason for the absence of the Ga- or F-associated PL peaks is discussed as well.

Effects of Current Density and Anodization Time on the Properties of Porous Si (양극산화 시간 및 전류밀도 변화에 따른 다공질 실리콘의 특성 변화)

  • Choi, Hyun-Young;Kim, Min-Su;Kim, Ghun-Sik;Cho, Min-Young;Jeon, Su-Min;Yim, Kwang-Gug;Lee, Dong-Yul;Kim, Jin-Soo;Kim, Jong-Su;Leem, Jae-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.3
    • /
    • pp.121-126
    • /
    • 2010
  • The PS(porous Si) were fabricated with different anodization time and current density. The structural and optical properties of PS were investigated by SEM(scanning electron microscopy), AFM(atomic force microscopy), and PL(photoluminescence). It is found that the pore size and surface roughness of PS are proportional to the current density. The PL spectra show that the PL peak position is red-shifted with increasing anodization time. This behavior corresponds to the change of pore size which is consistent with the quantum confinement model. The FWHM(full width at half maximum) of PL peak is decreased from 97 to 51 nm and the PL peak position is blue-shifted with increasing current density up to 10 mA/$cm^2$. The PL peak intensity of the PS fabricated under 1 mA/$cm^2$ is the highest among samples.

Temperature-dependent photoluminescence properties of amorphous and crystalline V2O5 films (비정질과 결정질 V2O5 박막의 온도에 따른 발광특성)

  • Kang, Manil;Chu, Minwoo;Kim, Sok Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.5
    • /
    • pp.202-206
    • /
    • 2014
  • In order to investigate the photoluminescence (PL) properties of $V_2O_5$ films, amorphous and crystalline films were prepared by using RF sputtering system, and the PL spectra of the films were measured at the temperatures ranging from 300 K to 10 K. In the amorphous $V_2O_5$ film grown at room temperature, a PL peak centered at ~505 nm was only observed, and in the crystalline $V_2O_5$ film, two peaks centered at ~505 nm and ~695 nm, which is known to correspond to oxygen defects, were revealed. The position of PL peak centered at 505 nm for both the amorphous and crystalline $V_2O_5$ films showed a strong dependence on temperature, and the positions were 2.45 eV at 300 K and 2.35 eV at 10 K, respectively. The PL at 505 nm was due to the band energy transition in $V_2O_5$, and also, the reduction of the peak position energy with decreasing temperature was caused by a decrement of the lattice dilatation effect with reducing electron-phonon interaction.