Browse > Article
http://dx.doi.org/10.3740/MRSK.2013.23.6.304

Effects of Sputter Deposition Sequence and Sulfurization Process of Cu, Zn, Sn on Properties of Cu2ZnSnS4 Solar Cell Material  

Park, Nam-Kyu (Department of Materials Science & Engineering, Chungnam National University)
Arepalli, Vinaya Kumar (Department of Materials Science & Engineering, Chungnam National University)
Kim, Eui-Tae (Department of Materials Science & Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.23, no.6, 2013 , pp. 304-308 More about this Journal
Abstract
The effect of a sputter deposition sequence of Cu, Zn, and Sn metal layers on the properties of $Cu_2ZnSnS_4$ (CZTS) was systematically studied for solar cell applications. The set of Cu/Sn/Zn/Cu multi metal films was deposited on a Mo/$SiO_2$/Si wafer using dc sputtering. CZTS films were prepared through a sulfurization process of the Cu/Sn/Zn/Cu metal layers at $500^{\circ}C$ in a $H_2S$ gas environment. $H_2S$ (0.1%) gas of 200 standard cubic centimeters per minute was supplied in the cold-wall sulfurization reactor. The metal film prepared by one-cycle deposition of Cu(360 nm)/Sn(400 nm)/Zn(400 nm)/Cu(440 nm) had a relatively rough surface due to a well-developed columnar structure growth. A dense and smooth metal surface was achieved for two- or three-cycle deposition of Cu/Sn/Zn/Cu, in which each metal layer thickness was decreased to 200 nm. Moreover, the three-cycle deposition sample showed the best CZTS kesterite structures after 5 hr sulfurization treatment. The two- and three-cycle Cu/Sn/Zn/Cu samples showed high-efficient photoluminescence (PL) spectra after a 3 hr sulfurization treatment, wheres the one-cycle sample yielded poor PL efficiency. The PL spectra of the three-cycle sample showed a broad peak in the range of 700-1000 nm, peaked at 870 nm (1.425 eV). This result is in good agreement with the reported bandgap energy of CZTS.
Keywords
CZTS; solar cells; sputtering; sulfurization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Ahmed, K. B. Reuter, O. Gunawan, L. Guo, L. T. Romankiw, H. Deligianni, Adv. Energy Mater., 2, 253-259 (2012).   DOI   ScienceOn
2 B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey, S. Guha, Prog. Photovolt: Res. Appl., 21, 72-76 (2013).   DOI   ScienceOn
3 J. Han, S. W. Shin, M. G. Gang, J. H. Kim, J. Y. Lee, Nanotechnology, 24, 095706 (2013).   DOI   ScienceOn
4 K. Jimbo, R. Kimura, T. Kamimura, S. Yamada, W. S. Maw, H. Araki, K. Oishi, H. Katagiri, Thin Solid Films, 515, 5997-5999 (2007).   DOI   ScienceOn
5 F. Liu, K. Zhang, Y. g Lai, J. Li, Z. Zhang, Y. Liu, Electrochem. Solid-State Lett., 13, H379 (2010).   DOI   ScienceOn
6 H. Katagiri, K. Jimbo, K. Moriya, K. Tsuchida, 3rd World Conference on Photovoltaic Energy Conversion, p.2874-2879, Osaka, Japan (2003).
7 A. V. Moholkar, S. S. Shinde, A. R. Babar, K. U. Sim, Y. B. Kwon, K. Y. Rajpure, P. S. Patil, C. H. Bhosale, J. H. Kim, Sol. Energy, 85, 1354-1363 (2011).   DOI   ScienceOn
8 A. Wangperawong, J. S. King, S. M. Herron, B. P. Tran, K. Pangan-Okimoto, S. F. Bent, 35th IEEE Photovoltaic Specialists Conference, p.001986-001989, Honolulu, Hawaii, USA (2010).
9 I. Repins, M. Contreras, M. Romero, Y. Yan, W. Metzger, J. Li, S. Johnston, B. Egaas, C. Dehart, J. Scharf, 33rd IEEE Photovoltaic Specialists Conference, p.1-6, San Diego, California, USA (2008).
10 G. S. Chen, J. C.Yang, Y. C. Chan, L. C. Yang, W. Huang, Sol. Energy Mater. & Sol. Cells, 93, 1351-1355 (2009).   DOI   ScienceOn
11 Y. B. He, A. Krost, J. Blasing, W. Kriegseis, A. Polity, B. K. Meyer, C. Kisielowski, Thin Solid Films, 451, 229-232 (2004).
12 C. S. Ferekides, D. Marinskiy, V. Viswanathan, B. Tetali, V. Palekis, P. Selvaraj, D.L. Morel, Thin Solid Films 361- 362, 520-526 (2000).   DOI   ScienceOn
13 H. Ohyama, T. Aramoto, A. Kumazawa, et al., 26th IEEE Photovoltaic Specialists Conference, p.343-346, Anaheim, California, USA (1997).