• Title/Summary/Keyword: PK method

Search Result 160, Processing Time 0.023 seconds

Prediction of Mechanical Property of Glass Fiber Reinforced Polycarbonate and Evaluation of Warpage through Injection Molding (유리섬유로 강화된 폴리카보네이트의 기계적 물성예측 및 사출성형을 통한 휨의 평가)

  • Moon, Da Mi;Choi, Tae Gyun;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.708-713
    • /
    • 2014
  • Most plastics products are being produced by injection molding process. However, mold shrinkage is inevitable in injection molding process and it deteriorates dimensional quality through deflections and warpages. Mold shrinkage depends upon the material property of resin as well as injection molding condition. In this study, material property of resin has been predicted for glass fiber reinforced polycarbonate to control the warpage, and computer simulation of injection molding has been performed using predicted property. It was observed that the deflection of part decreased by the glass fiber reinforced resin. In order to verify the validity of this method and confidence of results, experiments of injection molding were performed. The results of experiments and computer simulations showed good agreement in their tendency of deflections. Consequently, it was concluded that the method of designing the material property of resin conducted in this study can be utilized to control the dimensional accuracy of injection molded products.

Fabrication of High-Aspect-Ratio Microscale Polymer Hairs Having Surface Wrinkles (고 세장비 표면주름을 가진 마이크로 폴리머 헤어 제작)

  • Park, Sang-Hu;Kim, Seong-Jin;Park, Hee-Jin;Lee, Joo-Chul;Shin, Bo-Sung
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.1-4
    • /
    • 2013
  • We proposed a new process to fabricate a high-aspect-ratio microhair having surface wrinkles using the contact-and-tension of a microstamp. Through this work, we observed that regular surface wrinkles were generated on the hair with a diameter of around $20{\mu}m$ due to the uni-directional compressive stress during the photocuring process by ultraviolet light. To do this, we conducted an experimental system setup for contact-and-tension process. From the preliminary test results, we believed that the proposed method can be applied to make a long polymer hair having surface wrinkles for special applications to biomimetics, and some research fields related on surface area such as heat transfer and catalyst enhancement.

In-situ Determination of Structural Changes in Polyethylene upon Creep and Cyclic Fatigue Loading (크리프와 반복 피로하중에 의한 폴리에틸렌의 실시간 구조 변화)

  • Jeon, Hye-Jin;Ryu, Seo-Kgn;Pyo, Soo-Ho;Choi, Sun-Woong;Song, Hyun-Hoon
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.88-92
    • /
    • 2012
  • Long-term performance of polymer under constant sustained load has been the main research focus, which created a need for the accelerated test method providing proper lifetime assessment. Cycling fatigue loading is one of the accelerated test method and has been of great interest. Microstructure change of high density polyethylene under cyclic fatigue loading and creep was examined utilizing a tensile device specially designed for creep and fatigue test and also can be attachable to the X-ray diffractometer. In this way, the crystal morphology change of polyethylene under creep and cyclic fatigue load was successfully monitored and compared. Despite the marked differences in macroscopic deformation between the creep and cyclic fatigue tests, crystal morphology such as crystallinity, crystal size, and $d$-spacing was as nearly identical between the two test cases. Specimens pre-deformed to different strains, i.e., before yield point (BYP), at yield point (YP) and after yield point (AYP), however, showed markedly different changes in crystal morphology, especially between AYP and the other two specimens.

Preparation and Properties of Polystyrene/Graphene Nanofiller Nanocomposites via Latex Technology (라텍스 기법에 의한 폴리스티렌/그래핀 나노필러 나노복합재료의 제조 및 물성)

  • Yeom, Hyo Yeol;Na, Hyo Yeol;Chung, Dae-Won;Lee, Seong Jae
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.468-474
    • /
    • 2015
  • Electrically conductive polymer nanocomposites were prepared by the inclusion of graphene-based nanofillers. Graphene oxide (GO) and reduced graphene oxide wrapped by poly(styrene sulfonate) (PSS-RGO) were used as nanofillers to make good dispersion with the aqueous dispersion of polystyrene (PS) particles. GO sheets were synthesized by the modified Hummers' method from graphite, and PSS-RGO sheets were prepared by the reduction of GO-dispersed PSS solution with hydrazine monohydrate. Morphology and properties of PS/GO and PS/PSS-RGO nanocomposites via latex technology were investigated. Both nanofillers showed well dispersed morphology in PS matrix. Rheological and electrical percolation thresholds were 0.28 and 0.51 wt% for GO, and 0.50 and 1.01 wt% for PSS-RGO respectively. It is speculated that PS/GO nanocomposites showed better conductivity than PS/PSS-RGO counterparts due to the partial recovery of GO by thermal reduction during molding.

Modification of Polyacrylonitrile Films by Hydroxylamine and Hydrazine Treatment (히드록실아민과 히드라진 처리에 의한 폴리아크릴로니트릴 필름의 개질)

  • Park, Hee Jung;Kim, Young Ho
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.394-402
    • /
    • 2015
  • Modification of polyacrylonitrile (PAN) films by using hydroxylamine (HA) and hydrazine to produce hydroxyl and amine groups, respectively, and to introduce cross-linking of PAN polymers was studied. Modified PAN films obtained by HA and/or hydrazine treatment including a successive or a simultaneous process were analyzed by the degree of conversion, water and N,N'-dimethylformamide (DMF) swelling ratio, FTIR spectra, atom content, and thermal analysis data. PAN films reacted with HA showed increased hydrophilicity and low dimensional stability in water. Hydrazine treatment gave PAN films high dimensional stability of low DMF swelling. Although the DMF swelling ratio of the modified PAN films was dramatically decreased by the successive treatment of hydrazine and HA, the introduction of the hydrophilic functional groups was limited due to the cross-linking. Simultaneous treatment of HA and hydrazine was the most effective method to increase hydrophilicity of PAN films with a high dimensional stability.

Effect of Low Molecular Weight Species on the Interfacial Tension of PC/SAN Blend (PC/SAN 블렌드의 계면장력에 미치는 저분자량 성분의 영향)

  • Yang, Dongjin;Son, Younggon
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.388-393
    • /
    • 2015
  • Low molecular weight species were extracted from PC and SAN by a solvent extraction method in order to investigate the effect of low molecular weight species on interfacial tension and affinity between PC and SAN. From the analysis of molecular weight distribution by the GPC, it was confirmed that the low molecular weight species were effectively eliminated by the solvent extraction. Interfacial tension measurements and morphological observation were carried out with the PC and SAN of which the low molecular weight species were extracted. Interfacial tension was increased and the infinity was decreased for the extracted PC and SAN pair. This result implied that the low molecular weight species play a role as a compatibilizer between two polymers. Among two polymers, low molecular weight SAN contributes more in the compatibilization. Thus, it is favorable to use SAN containing a larger amount of low molecular weight species in fabrication of PC/ABS blend.

Influence of Activation Temperature on Electrochemical Performances of Styrene-Acrylonitrile Based Porous Carbons (Styrene-Acrylonitrile 기반 다공성 탄소의 전기화학적 특성에 활성화 온도가 미치는 영향)

  • Lee, Ji-Han;Heo, Gun-Young;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.739-744
    • /
    • 2012
  • In this work, we prepared the carbons from synthesized styrene-acrylonitrile carbon precursor. The prepared carbons were chemically activated, and then the activated SAN-based carbons were named as A-SANs. The activations were carried out at different temperatures to investigate the effect of activation temperature on the surface and electrochemical properties of the activated SAN-based carbons for using as an electrode of electric double layer capacitors (EDLC). The characteristics of A-SAN were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), surface area and pore size analysis. Also, the electrochemical behaviors were observed by cyclic voltammetry and galvanostatic charge-discharge method. From the results, the A-SAN 700 showed excellent electrochemical property and the highest specific capacitance, but these properties decreased when the activation temperature was above $700^{\circ}C$. This is due to the fact that the activation at a temperature over $700^{\circ}C$ causes deformation of micropore structures.

Baroplastic Process of PBA/PS/Si Blend Prepared by Heterocoagulation (Heterocoagulation으로 제조된 PBA/PS/Si 블렌드의 압력가소성)

  • Lee, Kwang-Hee;Ryu, Sang-Woog
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.727-732
    • /
    • 2012
  • Baroplastic poly(butyl acrylate) (PBA)/polystyrene (PS) blends were prepared by mixing PBA and PS emulsions synthesized by cationic and anionic surfactant, respectively. Interestingly, the heterocoagulation of nanoparticles have found to be affected strongly by emulsion concentration but the blends have been prepared with almost same compositions regardless of the amount of reactants. Utilizing this method, PBA/PS/Si hybrid nano-blends were prepared successfully via electrostatic attraction forces between PBA, PS and silica nanoparticles. The hybrid nano-blend having 2 or 5 wt% of silica was then processed to a semi-transparent film at $25^{\circ}C$ under 13.8 MPa for 10 min, which showed 3.0 MPa of tensile strength and 25 MPa of elastic modulus. Therefore, the heterocoagulation technique can be used for preparing baroplastics with uniform compositions of polymer and silica nanoparticles.

Numerical study on the optimal position of a pile for stabilization purpose of a slope

  • Boulfoul, Khalifa;Hammoud, Farid;Abbeche, Khelifa
    • Geomechanics and Engineering
    • /
    • v.21 no.5
    • /
    • pp.401-411
    • /
    • 2020
  • The paper describes the influence of pile reinforcement on the stability of the slope behaviour, and the exploitation of the results of in situ measurements will be conducted. In the second part, a 2D numerical modelling will be conducted by using the finite element code PLAXIS2D; in order to validate the proposed modelling approach by comparing the numerical results with the measurements results carried out on the slides studied; to study the effect of positioning of piles as a function of the shear parameters of the supported soil on the behaviour of the soil. For various shear strength of the soil a row of pile position is found, at which the piles offer the maximum contribution to slope stability. The position of piles is found to influence the safety factor in granular soil whereas it shows a slight influence on the safety factor in coherent soil. The results also indicate that the ideal position for such stabilizing piles is in the middle height of the slope. Comparison of results of present study with literature from publication: indicated that to reach the maximum stability of slope, the pile must be installed with Lx/L ratio (0.37 to 0.62) and the inclination must be between 30° to 60°. Even, after a certain length of the pile, the increasing will be useless. The application of the present approach to such a problem is located at the section of PK 210+480 to 210+800 of the Algerian East-West Highway.

Prediction of Pharmacokinetics and Penetration of Moxifloxacin in Human with Intra-Abdominal Infection Based on Extrapolated PBPK Model

  • Zhu, LiQin;Yang, JianWei;Zhang, Yuan;Wang, YongMing;Zhang, JianLei;Zhao, YuanYuan;Dong, WeiLin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.99-104
    • /
    • 2015
  • The aim of this study is to develop a physiologically based pharmacokinetic (PBPK) model in intra-abdominal infected rats, and extrapolate it to human to predict moxifloxacin pharmacokinetics profiles in various tissues in intra-abdominal infected human. 12 male rats with intra- abdominal infections, induced by Escherichia coli, received a single dose of 40 mg/kg body weight of moxifloxacin. Blood plasma was collected at 5, 10, 20, 30, 60, 120, 240, 480, 1440 min after drug injection. A PBPK model was developed in rats and extrapolated to human using GastroPlus software. The predictions were assessed by comparing predictions and observations. In the plasma concentration versus time profile of moxifloxcinin rats, $C_{max}$ was $11.151{\mu}g/mL$ at 5 min after the intravenous injection and $t_{1/2}$ was 2.936 h. Plasma concentration and kinetics in human were predicted and compared with observed datas. Moxifloxacin penetrated and accumulated with high concentrations in redmarrow, lung, skin, heart, liver, kidney, spleen, muscle tissues in human with intra-abdominal infection. The predicted tissue to plasma concentration ratios in abdominal viscera were between 1.1 and 2.2. When rat plasma concentrations were known, extrapolation of a PBPK model was a method to predict drug pharmacokinetics and penetration in human. Moxifloxacin has a good penetration into liver, kidney, spleen, as well as other tissues in intra-abdominal infected human. Close monitoring are necessary when using moxifloxacin due to its high concentration distribution. This pathological model extrapolation may provide reference to the PK/PD study of antibacterial agents.