• Title/Summary/Keyword: PIXE

Search Result 59, Processing Time 0.025 seconds

Measurement of the Single and Size-Classified Raindrops

  • Ma, Chang-Jin;Mikio Kasahara;Hwang, Kyung-Chul;Park, Kum-Chan;Kim, Hui-Kang
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.E
    • /
    • pp.73-79
    • /
    • 1999
  • To Characterize the single raindrops as a function of their size we designed the sampling and handling apparatuses. Samplings of single and size- classified raindrops were performed at a height of 20m above the ground level of a Kyoto University building located in Uji, Japan in rain events from middle of July to the end of August, 1999. And PIXE method was applied to the analysis of single raindrops sampled as a function of their size. Diameter change of frozen raindrops by liquid nitrogen did nto affect the size segregation ability of our sampling apparatus. The number of raindrops increases with decreasing drop size. And it is found that the size distribution of raindrops verified depends on the rain events. Application of PIXE analysis to the measurement of single raindrops was very successful. Every element showed a continuous increase in concentration with decreasing raindrop diameter. It seems reasonable to say that our work should be helpful to obtain more detailed information on single raindrops and especially to study on the rainout and washout mechanisms.

  • PDF

Chemically Aged Asian Dust Particles Proven by Traditional Spot Test and the Most Advanced micro-PIXE

  • Ma, Chang-Jin;Tohno, Susumu;Kang, Gong-Unn
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.2
    • /
    • pp.114-123
    • /
    • 2016
  • A change in chemical compositions of Asian dust (AD) particles can dramatically alter their optical properties, cloud-forming properties, and health effects. The present study was undertaken to evaluate this aging of AD particles by means of two complementary methods (i.e., the traditional spot test and the most advanced micro-PIXE analytical technique) for single particle analysis. Size-classified particles were sampled at the rural peninsula of Korea (Byunsan, 35.37N; 126.27E) during AD event and non-AD period in 2004. Sulfate was principally enriched on the particles in the size range of $7.65-10.85{\mu}m$ collected during AD event. The average number fraction of coarse particles ($>2.05{\mu}m$) containing chloride was 16.2% during AD event. Relatively low particles containing nitrate compared to those containing sulfate and chloride were found in AD event. Micro-PIXE elemental maps indicated that a large number of AD particles were internally mixed with man-made zinc. The highest peaks of EC and OC concentrations were appeared at $0.01-0.43{\mu}m$ particle aerodynamic diameter. High EC concentration in $PM_1$ was might be caused by the Saemangeum Seawall Project that was being conducted during our field measurement.

A Preliminary Study on a Method for the Morphological and Quantitative Analyses of Individual Snow Crystals and Its Application for Field Measurement

  • Ma, Chang-Jin
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.3
    • /
    • pp.196-203
    • /
    • 2011
  • The main aim of this study is to establish methods of morphological preservation and elemental quantification for individual snow crystals. Individual snow crystals were collected at a height of 20 m above ground level. To stabilize and preserve the original morphologies of the snow crystals, cyanoacrylate, which has been used to fix liquid droplets, was applied (Kasahara et al., 2000). Several different kinds of snow crystals (dendrite, sectored plate, quasi-sectored plate, and hexagonal plate) were successively stabilized using this method. The stabilized snow crystals were pretreated with acetone, and then the elemental components contained in a whole snow crystal were quantified with the Particle Induced X-ray Emission (PIXE) analytical technique. The snow crystal residual composition determined in the present study was dominated by sulfur and mineral components, and the elemental mass showed an apparent crystal size dependence, where the elemental mass gradually decreased as the crystal size increased.

Laboratory-scale Experiment and Model Calculation on the Washout Mechanism of Asian Dust Particles

  • Ma, Chang-Jin;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.3
    • /
    • pp.161-168
    • /
    • 2013
  • In this study, an investigation was conducted to assess the washout mechanism of Asian dust particles through both laboratory-scale experiment and model calculation. To artificially simulate Asian dust particle, $CaCO_3$ particles were generated inside an experimental chamber. They were then scavenged by the artificial rain drops. The abundant $CaCO_3$ particles scavenged on a rain drop were successively identified by SEM observation. The concentrations of Ca in residual $CaCO_3$ particles on individual droplet were quantified by PIXE analysis. There was a tendency toward a high accumulation of Ca on a relatively small drop (e.g., <1.0 mm diameter). It is thus suggested that smaller rain drops can effectively scavenge a significant amount of Asian dust particles in ambient atmosphere. The numerical estimation can account for 92.1% and 83.2% of Ca that were measured in small (<1.0 mm diameter) and large (>2.0 mm diameter) size drops, respectively.

Experimental Studies on Wet Scavenging of Atmospheric Aerosols by Rain Drops

  • Park Jeong-Ho;Suh Jeong-Min;Choi Kum-Chan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.E3
    • /
    • pp.87-94
    • /
    • 2005
  • Wet scavenging by rain drops is a most important removal process of air pollutants. In order to study the scavenging mechanisms of aerosol particles, the characteristics of chemical components in the rain water were examined as a function of the amount of rainfall. Rain water were collected continuously and separated into the soluble and insoluble components. The elemental concentrations in both components were determined by a PIXE analysis. The physical and chemical characteristics of atmospheric aerosols during the rainfall events were measured simultaneously. The elemental concentrations in rain water decreased substantially just after rain started and then gradually declined in subsequential rain fall exceeding 1.0 mm. The large particles were scavenged more easily than the fine particles. Fe, Ti and Si in rain water were in high insoluble state. Contrarily, almost whole of S was dissolved in rain water.

Interpretation of the Chemical Transformation of Individual Asian Dust Particles Collected on the Western Coast of Korean Peninsula

  • Ma, Chang-Jin;Kim, Jong-Ho;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.1
    • /
    • pp.14-22
    • /
    • 2012
  • This paper is focused on the comprehensive and detailed interpretation for the chemical transformation of individual Asian dust (hereafter called "AD") particles during long-range transport from source regions to receptor area. A multi-stage particle sampler was operated at a ground-based site in Taean, Korea directly exposed to the outflow of air masses from China during AD period in April 2003. Both quantitative and qualitative analyses for size-classified individual particles were carried out by a microbeam X-ray fluorescence (XRF) method and a microbeam Particle Induced X-ray Emission (micro-PIXE), respectively. Among major characteristic elements, the elemental masses of soil derived components, sulfur, and chloride varied as a function of particle size showing the monomodal maximum with a steeply increasing at 3.3-4.7 ${\mu}m$ particle size. Although the details on chemical composition of AD particle collected on a straight line from source area to our ground-based site are needed, a large amount of Cl coexisted in and/or on AD particles suggests that AD particles collected in the present study might be actively engaged in chemical transformation by sea-salt and other Cl containing pollutants emitted from the China's domestic sources. Through the statistical analyses it was possible to classify individual AD particles into six distinct groups. The internally mixed AD particles with Cl, which has various sources (e.g., sea-salt, coal combustion origin HCl, gaseous HCl derived from the adsorption of acids to sea-salt, and Cl containing man-made particles) were thoroughly fractionated by the elemental spectra drivened by the double detector system of micro-PIXE.

An Orchestrated Attempt to Determine the Chemical Properties of Asian Dust Particles by PIXE and XRF Techniques

  • Ma, Chang-Jin;Kim, Ki-Hyun;Choi, Sung-Boo;Kasahara, Mikio;Tohno, Susumu
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.3
    • /
    • pp.189-197
    • /
    • 2010
  • An orchestrated attempt was made to analyze samples of bulk and individual particulate matters (PM) collected at the Gosan ground-based station on the west coast of Jeju, Korea. A two-stage filter pack sampler was operated to collect particles in both large (> $1.2\;{\mu}m$) and small size fractions (< $1.2\;{\mu}m$) between the Asian dust (hereafter called "AD") storm event and non-Asian dust period. Elemental components in bulk and individual particles were determined by PIXE and synchrotron XRF analysis systems, respectively. To assess the transport pathways of air parcels and to determine the spatial distribution of PM, the backward trajectories of the Meteorological Data Explorer (Center for Global Environmental Research, 2010) and the NOAA's HYSPLIT dispersion-trajectory models were applied. In line with general expectations, Si and other crustal elements in large size particles showed considerably higher mass loading on AD days in comparison with non-AD days. Computation of the crustal enrichment factors [(Z/Si)$_{particle}$/(Z/Si)$_{desert}$ sand] of elements in large size particles (> $1.2\;{\mu}m$) allowed us to estimate the source profile and chemical aging of AD particles as well as to classify the soil-origin elements. On the basis of a single particle analysis, individual AD particles are classified into three distinct groups (neutralized mineral particles, S-rich mineral particles, and imperfectly neutralized particles).

A proton induced X-ray emission (PIXE) analysis of concentration of major/trace and toxic elements in broiler gizzard and flesh of Tehsil Gujar Khan area in Pakistan

  • Nadeem, Khawar;Hussain, Javaid;Haq, Noaman Ul;Haq, A. Ul;Akram, Waheed;Ahmad, Ishaq
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.2042-2049
    • /
    • 2019
  • Ten gizzard and three flesh samples of the broiler were collected from different locations in Tehsil Gujar Khan District Rawalpindi, Pakistan. The samples were dried, crushed and ground. Pellets were prepared by pressing the powder of the samples and that of the Bovine liver 1577c reference material obtained from NIST, USA. Proton induced X-ray emission (PIXE) installed at National Center for Physics, Islamabad, Pakistan has been used as a reliable and improved technique to determine concentration of various major/trace and toxic elements e.g. S, Cl, K, Ca, Cl, Fe, Cu, Mn, Co, Zn, Ti, Cd, Ga, Cr, V and Ni, in the Gizzard and Flesh samples of the broiler. The concentrations of all the detected elements in the samples are statistically significant. The certified and measured values of the elements in the reference material were in agreement with each other within a deviation of 7%. S, Cl, K and Ca are within tolerable limits and are good for human consumption. Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn were more than the acceptable limits of World Health Organization, WHO whereas Ga, As, Sn, Sb and Pb are not detected in most of the samples.