DOI QR코드

DOI QR Code

A Preliminary Study on a Method for the Morphological and Quantitative Analyses of Individual Snow Crystals and Its Application for Field Measurement

  • Ma, Chang-Jin (Department of Environmental Science, Fukuoka Women's University)
  • Received : 2011.05.25
  • Accepted : 2011.06.20
  • Published : 2011.09.30

Abstract

The main aim of this study is to establish methods of morphological preservation and elemental quantification for individual snow crystals. Individual snow crystals were collected at a height of 20 m above ground level. To stabilize and preserve the original morphologies of the snow crystals, cyanoacrylate, which has been used to fix liquid droplets, was applied (Kasahara et al., 2000). Several different kinds of snow crystals (dendrite, sectored plate, quasi-sectored plate, and hexagonal plate) were successively stabilized using this method. The stabilized snow crystals were pretreated with acetone, and then the elemental components contained in a whole snow crystal were quantified with the Particle Induced X-ray Emission (PIXE) analytical technique. The snow crystal residual composition determined in the present study was dominated by sulfur and mineral components, and the elemental mass showed an apparent crystal size dependence, where the elemental mass gradually decreased as the crystal size increased.

Keywords

References

  1. Bohren, C.F. (1986) Applicability of effective-medium theories to problems of scattering and absorption by nonhomogeneous atmospheric particles. Journal of the Atmospheric Sciences 43, 468-475. https://doi.org/10.1175/1520-0469(1986)043<0468:AOEMTT>2.0.CO;2
  2. Carter, W.L., Hasegawa, I. (1975) Fixation of tobacco smoke aerosols for size distribution studies. Journal of Colloid Interface Science 53, 134-141. https://doi.org/10.1016/0021-9797(75)90044-2
  3. Croft, B., Lohmann, U., Martin, R.V., Stier, P., Wurzler, S., Feichter, J., Hoose, C., Heikkilä, U., van Donkelaar, A., Ferrachat, S. (2010) Influences of in-cloud aerosol scavenging parameterizations on aerosol concentrations and wet deposition in ECHAM5-HAM. Atmospheric Chemistry and Physics 10, 1511-1543. https://doi.org/10.5194/acp-10-1511-2010
  4. Ehrman, S.H., Schwikowski, M., Baltensperger, U., Gäggeler, H.W. (1998) Chemical characterization of individual ice crystal and size-classified snow samples. Journal of Aerosol Science 29, S323-S324. https://doi.org/10.1016/S0021-8502(98)00480-7
  5. Flossmann, A.I., Hall, W.D., Pruppacheer, H.R. (1985) A theoretical study of the wet removal of atmospheric pollutants, Part I: The distribution of aerosol particles captured through nucleation and impaction scavenging by growing cloud drops. Journal of Atmospheric Science 42, 583-606. https://doi.org/10.1175/1520-0469(1985)042<0583:ATSOTW>2.0.CO;2
  6. Hansen, J., Nazarenko, L. (2004) Soot climate forcing via snow and ice albedos. Proceedings of the National Academy of Sciences of the Unite State of America 101(2), 423-428. https://doi.org/10.1073/pnas.2237157100
  7. Ishii, Y., Akitaya, E. (1992) Chemical compositions of solid precipitation and snow cover in Sapporo, 1991-1992. The Report of Low Temperature Science, Series A 51, 24-30.
  8. Ji, W., Wang, P.K. (1999) Ventilation coefficients for falling ice crystals in the atmosphere at low-intermediate Reynolds numbers. Journal of the Atmospheric Science 56, 829-836. https://doi.org/10.1175/1520-0469(1999)056<0829:VCFFIC>2.0.CO;2
  9. Kasahara, M., Akashi, S., Ma, C.-J., Tohno, S. (2003) Fixation and chemical analysis of individual fog droplet and raindrop. Atmospheric Research 65, 251-259. https://doi.org/10.1016/S0169-8095(02)00152-7
  10. Kasahara, M., Akashi, S., Ma, C.J., Tohno, S., Ohnishi, Y. (2000) Physicochemical characteristics of individual fog droplets and raindrops. Environmental Conservation Engineering 29, 822-827. (in Japanese) https://doi.org/10.5956/jriet.29.822
  11. Liang, J., Li, Z., Tsuji, K., Nakano, K., Nout, M.J.R., Hamer, R.J. (2008) Milling characteristics and distribution of phytic acid and zinc in rice kernels. Journal of Cereal Science 48, 83-91. https://doi.org/10.1016/j.jcs.2007.08.003
  12. Libbrecht, K. (2007) The art of the snowflake, Voyageur Press, Minnesota, pp. 136-146.
  13. Ma, C.J., Kasahara, M., Tohno, S., Sakai, T. (2003) A new attempt to study the particle scavenging properties of individual snow crystals using a replication technique. Journal of Japan Society Atmospheric Environment 38, 89-99.
  14. Magono, C., Endoh, T., Harimaya, T., Kubota, S. (1974) A measurement of scavenging effect of falling snow crystals on the aerosol concentration. Journal of the Meteorological Society of Japan 52, 407-416. https://doi.org/10.2151/jmsj1965.52.5_407
  15. Magono, C., Endoh, T., Ueno, F., Kubota, S., Itasaka, M. (1979) Direct observations of aerosols attached to falling snow crystals. Tellus 31, 102-114. https://doi.org/10.1111/j.2153-3490.1979.tb00887.x
  16. Mitra, S.K., Barth, U., Pruppacher, H.R. (1990) A laboratory study of the efficiency with which aerosol particles are scavenged by snowflakes. Atmospheric Environment 24A, 1247-1254.
  17. Moschos, M., Droutsas, D. (1997) Clinical experience with cyanoacrylate tissue adhesive. Documenta Ophthalmologica (Soringer) 93(3), 237-245. https://doi.org/10.1007/BF02569064
  18. Mosimann, L., Weigartner, E., Waldvogel, A. (1994) An analysis of accreted drop sizes and mass on rimed snow crystals. Journal of Aerosol Science 58, 1548-1558.
  19. Munger, J.W., Collett, J.R.J., Daube, J.R.B., Hoffmann, M.R. (1989) Chemical composition of coastal stratus clouds: Dependence on droplet size and distance from the coast. Atmospheric Environment 23, 2305-2320. https://doi.org/10.1016/0004-6981(89)90192-3
  20. Murakami, M., Kikuchi, K., Magono, C. (1985) Experiments on aerosol scavenging by natural snow crystals. Part I: Collection efficiencies of uncharged snow crystals for micron and submicron particles. Journal of the Meteorological Society of Japan 63, 119-129. https://doi.org/10.2151/jmsj1965.63.1_119
  21. Petzold, A., Strom, A., Ohlsson, S., Schroder, F.P. (1998) Elemental composition and morphology of ice-crystal residual particles in cirrus clouds and contrails. Atmospheric Research 49, 21-34. https://doi.org/10.1016/S0169-8095(97)00083-5
  22. Pruppacher, H.R., Klett, J.D. (1997) Microphysics of clouds and precipitation. Kluwer Academic Publishers, Boston, London, pp. 38-57.
  23. Rango, A., Wergin, W.P., Erbe, E.F. (1996) Snow crystal imaging using scanning electron microscopy: I. Precipitated snow. Hydrological Sciences 41(2), 219-233. https://doi.org/10.1080/02626669609491494
  24. Sauter, D.P., Wang, P.L. (1989) An experimental study of the scavenging of aerosol particles by natural snow crystals. Journal of Atmospheric Science 46, 1650-1655. https://doi.org/10.1175/1520-0469(1989)046<1650:AESOTS>2.0.CO;2
  25. Seifert, M., Strom, J., Krejci, R., Minikin, A., Petzold, A., Gayet, J.F., Schumann, U., Ovarlez, J. (2002) Insitu observations of aerosol particles remaining from evaporated cirrus crystals: Comparing clean and polluted air masses. Atmospheric Chemistry and Physics, Discuss 2, 1599-1633. https://doi.org/10.5194/acpd-2-1599-2002
  26. Sera, K., Futatsugawa, S., Matsuda, K. (1999) Quantitative Analysis of Untreated Bio-samples. Nuclear Instruments and Methods in Physics Research B 150, 226-233. https://doi.org/10.1016/S0168-583X(98)01071-4
  27. Slinn, W.G.N. (1974) The redistribution of a gas plume caused by reversible washout. Atmospheric Environment 8, 233-241. https://doi.org/10.1016/0004-6981(74)90090-0
  28. Targino, A.C., Krejci, R., Noone, K.J., Glantz, P. (2006) Single particle analysis of ice crystal residuals observed in orographic wave clouds over Scandinavia during INTACC experiment. Atmospheric Chemistry and Physics 6, 1977-1990. https://doi.org/10.5194/acp-6-1977-2006
  29. Warren, S.G., Wiscombe, W.J. (1985) Dirty snow after nuclear war. Nature 313, 467-470. https://doi.org/10.1038/313467a0