• Title/Summary/Keyword: PID-제어기

Search Result 1,054, Processing Time 0.026 seconds

A Design of PID Controller using Quantitative Feedback Theory and Turbine Speed Control (정량적 궤환이론을 이용한 PID 제어기 설계 및 터빈 속도제어)

  • 김주식
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.4
    • /
    • pp.1-7
    • /
    • 2002
  • QFT is a very practical design technique that emphasizes the use of feedback for achieving the desired system performances in despite of plant uncertainties and disturbances. The loop shaping procedure of QFT is employed to design the robust controller, until the desired bounds are satisfied. This paper presents an optimization algorithm for designing PID controller using the loop shaping of QFT. The proposed method identifies the parameter vector of PID controller from a linear system that develops from rearranging the two dimensional system matrices and output vectors obtained from the QFT bounds. The feasibilities of the suggested algorithm are illustrated with a turbine speed control problem.

Design of an Auto-Tuning IMC-PID Controller for a Heater System Using uDEAS (uDEAS를 이용한 히터 시스템의 IMC-PID 자동 동조 제어기 설계)

  • Kim, Man-Seok;Kim, Jo-Hwan;Choi, Min-Koo;Park, Jong-Oh;Kim, Jong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.530-535
    • /
    • 2011
  • This paper deals with the precise temperature control of the heater used at a weaving thread or a drawn process. For precise temperature control, we suggest a design method that is auto-tuning IMC-PID controller using an optimization method uDEAS. For this method, we model the roll heater from the measurement data and we automatically tune the low pass filter value of IMC-PID controller that satisfies stability and conrol performance. Finally, we implement the designed controller using DSP kit.

Tuning gains of a PID controller using fuzzy logic-based tuners (퍼지 로직 동조기를 이용한 PID 제어기의 이득 조정)

  • 이명원;권순학;이달해
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.184-187
    • /
    • 1996
  • In this paper, an algorithm for tuning gains of a PID controller is proposed. The proposed algorithm is composed of two stages. The first is a stage for Lyapunov function-based initial stabilization of an overall system and rough tuning gains of the PID controller. The other is that for fine tuning gains of the PID controller. All tunings are performed by using the well-known fuzzy logic-based tuner. The computer simulations are performed to show the validity of the proposed algorithm and results are presented.

  • PDF

A Design of PID Controller Using Reduced Model in Frequency Domain (주파수영역에서 축소모델을 이용한 PID 제어기 설계)

  • Kim, Jong-Gun;Kim, Ju-Sik;Jeon, Byeong-Seok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.1
    • /
    • pp.80-86
    • /
    • 2005
  • This paper proposes a design method of PID controller for achieving the desired specifications in the frequency domain via the reduced model of a high-order model with time delay. The proposed method identifies the parameter vector of PID controller from a linear system that develops from rearranging the two dimensional input matrices and output vectors obtained from the frequency bounds. Four examples are given to illustrate the feasibilities of the suggested schemes.

Design of PID Type Fuzzy Logic Acceleration Controller for Turbojet Engine Using High-gain Observer (고이득 관측기를 이용한 터보제트 엔진의 PID 퍼지 추론 가속도 제어기 설계)

  • Jie, Min-Seok;Kim, Dae-Gi;Hong, Gyo-Young;Ahn, Dong-Man;Hong, Seung-Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.1
    • /
    • pp.107-114
    • /
    • 2013
  • In this paper, we propose controller to control the acceleration of unmanned aircraft turbojet engine. The high-gain observer to estimate the rotational speed of compressor is used, and the turbojet engine controller applying fuzzy heuristic techniques and PID control algorithm are designed. fuzzy PID controller produces the flow control input to prevent the surge and flame-out phenomena at the acceleration and deceleration of the turbojet engine. The standard acceleration is set and the fuel flow control is defined by the fuzzy heuristic. Computer simulations are performed using MATLAB in order to verify the performance of the proposed controller.

A Study on the Speed Control of Induction Motor using a PID Controller and Neural Network Controller (PID제어기와 신경회로망 제어기를 이용한 유도전동기의 속도제어에 관한 연구)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1993-1997
    • /
    • 2009
  • Robust control for DC servo motor is needed according to the highest precision of industrial automation. However, when a motor control system with PID controller has an effect of load disturbance, it is very difficult to guarantee the robustness of control system. As a compensation method solving this problem, in this paper, PID-neural network hybrid control method for motor control system is presented. The output of neural network controller is determined by error and rate of error change occurring in load disturbance. The robust control of DC servo motor using neural network controller is demonstrated by computer simulation.

The Stabilization Loop Design for a Drone-Mounted Camera Gimbal System Using Intelligent-PID Controller (Intelligent-PID 제어기를 사용한 드론용 짐발 시스템의 안정화기 설계)

  • Byun, Gi-sig;Cho, Hyung-rae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.1
    • /
    • pp.102-108
    • /
    • 2016
  • A flying drone generates vibrations in a great variety of frequencies, and it requires a gimbal system stabilization loop design in order to obtain clean and accurate image from the camera attached to the drone under this environment. The gimbal system for drone comprises the structure that supports the camera module and the stabilization loop which follows the precise angle while blocking the vibration from outside. This study developed a dynamic model for one axis for the stabilization loop design of a gimbal system for drones and applied classical PID controller and intelligent PID controller. The Stabilization loop design was developed by using MATLAB/Simulink and compared the performance of each controller through simulation. Especially, the intelligent PID controller can be designed almost without the dynamic model and it demonstrates that the angle can be followed without readjusting the parameters of the controller even when the characteristics of the model changes.

Development of hovering-type AUV test-bed 'OCTAGON' (호버링 타입 자율무인잠수정 'OCTAGON'의 테스트베드 개발)

  • Choi, Dong-Ho;Lee, Young-Jin;Hong, Sung-Min;Kim, Joon-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.516-526
    • /
    • 2016
  • This paper introduces a hovering-type autonomous underwater vehicle (AUV) developed for research and its fundamental motion performance results obtained by simulation and field test. The AUV can control its motion in four degrees of freedom (DOF) by means of its horizontal and vertical thrusters, and it is designed to provide a test-bed that facilitates ease of operation and experimentation. Prior to the field tests, six DOF equations of motion are developed, and a simulation program is constructed using MATLAB and Simulink to verify the essential motion performance of the designed vehicle. Furthermore, a proportional-integral-derivative (PID) controller and fuzzy PID controller are designed, and their performances are verified through a simulation. Field tests are performed to verify the motion performance of the AUV; way-point tracking is executed by the PID and fuzzy PID controllers. The results confirmed appropriate control performance under current disturbances.

Design of Stable Controller to Sudden A/C Disturbance (급격한 에어콘 외란에 안정한 제어기 설계)

  • 이영춘;권대규;이성철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.106-112
    • /
    • 2000
  • The purpose of this paper is to study on the control of the engine idle speed under sudden A/C load which is one of the most severe disturbances on engines. Three types of the closed-loop controller are developed for the stable engine idle speed control. The input of the controller is an error of rpm. The output of the controller is an ISCV duty cycle. The anticipation delay is considered to deal with the delay time of the air mass in engine. The PID, Fuzzy and PID-type Fuzzy controllers with the anticipation delay have improved the engine idle speed condition more than current ECU map table under the A/C load.

  • PDF

A study on the stabilization and controller design for directional pan-tilt system (지향성 Pan-Tilt 시스템의 안정화와 제어기 설계에 관한 연구)

  • Shin, Suk-Shin;Noh, Jong-Ho;Park, Jong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.192-198
    • /
    • 2013
  • This paper presents the stabilization and design of a pan-tilt control part for the directional pan-tilt system for shipboard directional equipment. In order to control each control axis with compensation for ship motion, the 2 degree of freedom(2DOF) PID controller is designed and its parameters are tuned using a real-coded genetic algorithm(RCGA). Simulation demonstrates the effectiveness of the 2 DOF PID controller tuning.