• 제목/요약/키워드: PI3-kinase

검색결과 354건 처리시간 0.026초

TrkB Promotes Breast Cancer Metastasis via Suppression of Runx3 and Keap1 Expression

  • Kim, Min Soo;Lee, Won Sung;Jin, Wook
    • Molecules and Cells
    • /
    • 제39권3호
    • /
    • pp.258-265
    • /
    • 2016
  • In metastatic breast cancer, the acquisition of malignant traits has been associated with the increased rate of cell growth and division, mobility, resistance to chemotherapy, and invasiveness. While screening for the key regulators of cancer metastasis, we observed that neurotrophin receptor TrkB is frequently overexpressed in breast cancer patients and breast cancer cell lines. Additionally, we demonstrate that TrkB expression and clinical breast tumor pathological phenotypes show significant correlation. Moreover, TrkB expression was significantly upregulated in basal-like, claudin-low, and metaplastic breast cancers from a published microarray database and in patients with triple-negative breast cancer, which is associated with a higher risk of invasive recurrence. Interestingly, we identified a new TrkB-regulated functional network that is important for the tumorigenicity and metastasis of breast cancer. We demonstrated that TrkB plays a key role in regulation of the tumor suppressors Runx3 and Keap1. A markedly increased expression of Runx3 and Keap1 was observed upon knockdown of TrkB, treatment with a TrkB inhibitor, and in TrkB kinase dead mutants. Additionally, the inhibition of PI3K/AKT activation significantly induced Runx3 and Keap1 expression. Furthermore, we showed that TrkB enhances metastatic potential and induces proliferation. These observations suggest that TrkB plays a key role in tumorigenicity and metastasis of breast cancer cells through suppression of Runx3 or Keap1 and that it is a promising target for future intervention strategies for preventing tumor metastasis and cancer chemoprevention.

Differential Gene Expression in Estradiol-3-Benzoate-Treated Liver and Chemically- Induced Hepatocellular Carcinoma

  • KIM , SEYL;KANG, JIN-SEOK;JANG, DONG-DEUK;LEE, KOOK-KYUNG;KIM, SOON-AE;HAN, BEOM-SEOK;PARK, YOUNG-IN
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권6호
    • /
    • pp.1286-1294
    • /
    • 2004
  • In a previous study by the current authors, hepatocellular carcinoma (HCC) was determined to be epidemiologically sex-dependent, and the incidence and multiplicity of HCC found to decrease in estradiol-3 benzoate (EB)-treated F344 rats. Therefore, to ascertain the anticancer mechanism of EB, a commercially available cDNA microarray, with a total of 14,815 cDNA rat gene clones, was used to determine the differentially expressed genes in nontreated livers, EB-treated livers, and diethynitrosolamine (DEN)-induced HCC. In the sequenced experiment, a total of 85 genes were differentially expressed at either two or more times the rate of the normal expression, where 33 genes were downregulated by EB, and 52 genes upregulated. Candidate genes were selected according to significant changes observed in the mRNA expression in the EB-treated livers compared with the nontreated livers, then these genes were filtered according to their different expression patterns in the DEN-induced tumors compared to the estrogen-treated livers. To confirm the microarray data, a real-time PCR analysis was performed for ten selected genes: the H-ras revertant protein 107 (H­rev107), insulin-like growth factor binding protein (lOFBP), parathyroid hormone receptor (PI'HR), SH3 domain binding protein (SH3BP), metallothionein, src-suppressed C-kinase substrate (SSeCK) gene, phosphodiesterase I, CD44, epithelial membrane protein 3 (EMP3), and estrogen receptor a (ERa). The SSeCK and phosphodiesterase I genes were both upregulated in the DEN-induced hepatocarcinomas, yet their possible carcinogenic functions remain unknown. Meanwhile, the other genes were downregulated, including the genes related to growth regulation (IOFBP, H-revI07, ER$\alpha$), adipogenesis inhibition (PTHR), and tumor suppression (metallothionein).

2-(Trimethylammonium) Ethyl (R)-3-Methoxy-3-oxo-2-Stearamidopropyl Phosphate Suppresses Osteoclast Maturation and Bone Resorption by Targeting Macrophage-Colony Stimulating Factor Signaling

  • Park, So Jeong;Park, Doo Ri;Bhattarai, Deepak;Lee, Kyeong;Kim, Jaesang;Bae, Yun Soo;Lee, Soo Young
    • Molecules and Cells
    • /
    • 제37권8호
    • /
    • pp.628-635
    • /
    • 2014
  • 2-(Trimethylammonium) ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate [(R)-TEMOSPho], a derivative of an organic chemical identified from a natural product library, promotes highly efficient megakaryopoiesis. Here, we show that (R)-TEMOSPho blocks osteoclast maturation from progenitor cells of hematopoietic origin, as well as blocking the resorptive function of mature osteoclasts. The inhibitory effect of (R)-TEMOSPho on osteoclasts was due to a disruption of the actin cytoskeleton, resulting from impaired downstream signaling of c-Fms, a receptor for macrophage-colony stimulating factor linked to c-Cbl, phosphoinositol-3-kinase (PI3K), Vav3, and Rac1. In addition, (R)-TEMOSPho blocked inflammation-induced bone destruction by reducing the numbers of osteoclasts produced in mice. Thus, (R)-TEMOSPho may represent a promising new class of antiresorptive drugs for the treatment of bone loss associated with increased osteoclast maturation and activity.

The Anti-Adipogenic Activity of a New Cultivar, Pleurotus eryngii var. ferulae 'Beesan No. 2', through Down-Regulation of PPAR γ and C/EBP α in 3T3-L1 Cells

  • Kang, Min-Jae;Kim, Keun Ki;Son, Byoung Yil;Nam, Soo-Wan;Shin, Pyung-Gyun;Kim, Gun-Do
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권11호
    • /
    • pp.1836-1844
    • /
    • 2016
  • Adipogenesis is one of the cellular processes and a highly controlled program. Nowadays, inhibition of adipogenesis has received attention as an effective way to regulate obesity. In the current study, we investigated the inhibition effect of a chloroform extract of Pleurotus eryngii var. ferulae 'Beesan No. 2' (CEBT) on adipogenesis in 3T3-L1 murine preadipocytes. Pleurotus eryngii var. ferulae is one of many varieties of King oyster mushroom and has been reported to have various biological activities, including antitumor and anti-inflammation effects. Biological activities of 'Beesan No. 2', a new cultivar of Pleurotus eryngii var. ferulae, have not yet been reported. In this study, we found that CEBT suppressed adipogenesis in 3T3-L1 cells through inhibition of key adipogenic transcription factors, such as peroxisome proliferatoractivated receptor ${\gamma}$ and CCAAT/enhancer binding protein ${\alpha}$. Additionally, CEBT reduced the expression of the IRS/PI3K/Akt signaling pathway and its downstream factors, including mammalian target of rapamycin and p70S6 kinase, which stimulate adipogenesis. Furthermore, ${\beta}-catenin$, a suppressor of adipogenesis, was increased in CEBT-treated cells. These results indicate that Pleurotus eryngii var. ferulae 'Beesan No. 2' effectively inhibited adipogenesis, so this mushroom has potential as an anti-obesity food and drug.

인간 유방암 세포 이식마우스에서 EGFR/HER2 복합 Tyrosine Kinase 억제제인 GW572016에 의한 방사선증진효과 (Radiation Response Modulation of GW572016 (EGFR/HER2 Dual Tyrosine Kinase Inhibitor) in Human Breast Cancer Xenografts)

  • 김연실;노광원;채수민;문성권;윤세철;장홍석;정수미
    • Radiation Oncology Journal
    • /
    • 제25권4호
    • /
    • pp.233-241
    • /
    • 2007
  • 목적: EGFR, HER2 과발현 인간 유방암 세포를 이용한 종양이식 마우스에서 EGFR/HER2 복합 Tyrosine Kinase 억제제인 GW572016이 방사선반응성에 미치는 영향을 알아보고 종양조직의 EGFR/HER2수용체 억제효과 및 EGFR down stream signal pathway 단백인 ERK 1/2, PI3k/Akt 억제효과를 알아보고자 하였다. 대상 및 방법: SUM 102와 SUM 149 EGFR 과발현 세포와 SUM 185, SUM 225 HER2 과발현 세포를 우측 옆구리 피하에 접종하여 종양이식마우스를 만들었다. 이식마우스는 2군으로 나누어 한 군은 GW572016에 의한 EGFR/HER2 수용체 억제와 down stream signal 단백의 활성 변화를 Immunoprecipitation과 Western blot의 방법을 사용하여 관찰하였고 다른 한군은 GW572016에 의한 방사선감수성 변화를 알아보기 위해 1) 대조군, 2) GW572016 단독군, 3) 방사선단독군, 4) GW572016+방사선병용투여군으로 나누어 종양성장을 비교 관찰하였다. GW572016에 의해서 SUM 149, SUM 185이식종양에서 EGFR및 HER2 수용체의 활성이 억제되었으며 특히 SUM 185, HER2 과발현 이식종양에서는 ERK 1/2 down stream 단백의 활성도 억제되었다 SUM 225 HEH2 과발현 이식종양에서는 이전의 in vitro실험에서와 달리 GW572016에 의해 HER2수용체의 활성변화가 없었으나 ERK 1/2, Akt의 활성은 모두 억제되었다. GW572016에 의해 SUM 149과 SUM 185에서 종양성장억제효과가 관찰되었고 특히 SUM 149에서는 GW572016과 방사선치료병용군에서 종양성장억제효과가 좀더 뚜렷하여 방사선감수성을 증가시키는 것으로 생각되었다. 결 론: GW572016은 EGFR 혹은 HER2 과발현 유방암세포에서 EGFR/HER2 수용체 억제와 down stream signal 단백의 활성을 억제시켰으며 SUM 149에서는 방사선감수성을 증가시키는 것으로 생각된다. 향후 EGFR을 표적으로 하는 억제제치료에서 EGFR 수용체억제뿐 아니라 down stream 단백의 활성억제 여부가 방사선 감수성 및 저항성의 극복과 관련이 있으리라는 근거를 설명할 수 있으며 향후 좀더 깊이 있는 연구가 필요하다.

HCT116 대장암세포에서 AKT/mTOR/GSK-3β 신호경로 조절을 통한 벌 사상자 추출물(CME)의 apoptosis 및 cell cycle arrest 효과 (Apoptotic Effects and Cell Cycle Arrest Effects of Extracts from Cnidium monnieri (L.) Cusson through Regulating Akt/mTOR/GSK-3β Signaling Pathways in HCT116 Colon Cancer Cells)

  • 임은경;김근태;김보민;김은지;하성호;김상용;김영민
    • 생명과학회지
    • /
    • 제26권6호
    • /
    • pp.663-672
    • /
    • 2016
  • 벌 사상자[Cnidium monnieri (L.) Cusson]는 중국과 한국에 분포하는 일년생 초본으로, 화농성피부염 및 여성의 생식기 질환의 치료에 널리 사용되고 있다. 이 외에도 면역기능개선과 천식 등에 대한 효과는 보고된 바 있으나 아직까지 암과 관련된 연구는 많이 이루어지지 않았다. 이에 따라 본 연구에서는 인간 대장암 세포인 HCT116 세포주에서 벌 사상자 에탄올 추출물(CME)의 apoptosis 및 세포주기정지 유도 효과에 대하여 알아보고자 하였으며, 이러한 효과가 AKT/mTOR/GSK-3β 신호경로의 조절을 통하여 이루어지는지 확인하고자 하였다. MTT assay와 LDH assay 결과, 벌 사상자 에탄올 추출물에 의하여 HCT116 세포의 세포생존율이 감소하였으며, 세포독성효과가 나타났다. 또한 벌 사상자 에탄올 추출물의 농도의존적으로 apoptotic body의 수와 apoptosis 비율이 증가하였으며, G1기에서 세포주기정지 유도 효과가 관찰되었다. 세포의 성장과 증식 및 분열에 관련된 단백질인 Akt는 mTOR, p53, GSK-3β와 같은 신호단백질들의 발현을 조절하는 것으로 보고되었다. 벌 사상자 에탄올 추출물을 처리하였을 때, Akt와 mTOR 단백질의 인산화가 저해되었으며, 이에 따라 하위 신호조절 단백질인 GSK-3β, Bcl-2 family, Caspase-3, PARP의 발현이 조절되었다. 또한 Akt와 GSK-3β, mTOR 저해제 처리를 통하여 CME에 의한 apoptosis 효과가 AKT/mTOR/GSK-3β 신호경로를 통하여 이루어지는 것을 확인하였다. 결론적으로, 본 연구를 통하여HCT116 대장암 세포주에서 벌 사상자 에탄올 추출물이 암세포의 apoptosis 및 세포주기정지 유도에 효과적임을 확인하였다.

Role of stearyl-coenzyme A desaturase 1 in mediating the effects of palmitic acid on endoplasmic reticulum stress, inflammation, and apoptosis in goose primary hepatocytes

  • Tang, Bincheng;Qiu, Jiamin;Hu, Shenqiang;Li, Liang;Wang, Jiwen
    • Animal Bioscience
    • /
    • 제34권7호
    • /
    • pp.1210-1220
    • /
    • 2021
  • Objective: Unlike mammals, goose fatty liver shows a strong tolerance to fatty acids without obvious injury. Stearyl-coenzyme A desaturase 1 (SCD1) serves crucial role in desaturation of saturated fatty acids (SAFs), but its role in the SAFs tolerance of goose hepatocytes has not been reported. This study was conducted to explore the role of SCD1 in regulating palmitic acid (PA) tolerance of goose primary hepatocytes. Methods: 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide was examined to reflect the effect of PA on hepatocytes viability, and quantitative polymerase chain reaction was used to detect the mRNA levels of several genes related to endoplasmic reticulum (ER) stress, inflammation, and apoptosis, and the role of SCD1 in PA tolerance of goose hepatocytes was explored using RNA interfere. Results: Our results indicated that goose hepatocytes exhibited a higher tolerant capacity to PA than human hepatic cell line (LO2 cells). In goose primary hepatocytes, the mRNA levels of fatty acid desaturation-related genes (SCD1 and fatty acid desaturase 2) and fatty acid elongate enzyme-related gene (elongase of very long chain fatty acids 6) were significantly upregulated with 0.6 mM PA treatment. However, in LO2 cells, expression of ER stress-related genes (x box-binding protein, binding immunoglobulin protein, and activating transcription factor 6), inflammatory response-related genes (interleukin-6 [IL-6], interleukin-1β [IL-1β], and interferon-γ) and apoptosis-related genes (bcl-2-associated X protein, b-cell lymphoma 2, Caspase-3, and Caspase-9) was significantly enhanced with 0.6 mM PA treatment. Additionally, small interfering RNA (siRNA) mediated downregulation of SCD1 significantly reduced the PA tolerance of goose primary hepatocytes under the treatment of 0.6 mM PA; meanwhile, the mRNA levels of inflammatory-related genes (IL-6 and IL-1β) and several key genes involved in the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), forkhead box O1 (FoxO1), mammalian target of rapamycin and AMPK pathways (AKT1, AKT2, FoxO1, and sirtuin 1), as well as the protein expression of cytochrome C and the apoptosis rate were upregulated. Conclusion: In conclusion, our data suggested that SCD1 was involved in enhancing the PA tolerance of goose primary hepatocytes by regulating inflammation- and apoptosis-related genes expression.

Coupling Efficiencies of m1, m3 and m5 Muscarinic Receptors to the Stimulation of Neuronal Nitric Oxide Synthase

  • Park, Sun-Hye;Lee, Seok-Yong;Cho, Tai-Soon
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1996년도 춘계학술대회
    • /
    • pp.207-207
    • /
    • 1996
  • Through molecular cloning, five muscarinic receptors have been identified. The muscarinic receptors can be generally grouped according to their coupling to either stimulation of phospholipase C (m1, m3, and m5) or the inhibition of adenylate cyclase (m2 and m4). Each m1, m3, and m5 receptors has the additional potential to couple to the activation of phospholipase A$_2$, C, and D, tyrosine kinase, and the mobilization of Ca$\^$2+/. However, the differences in coupling efficiencies to different second messenger systems between these receptors have not been studied well. Ectopic expression of each of these receptors in mammalian cells has provided the opportunity to evaluate the signal transduction of each in some detail. In this work we compared the coupling efficiencies of the m1, m3 and m5 muscarinic receptors expressed in chinese hamster ovary (CHO) cells to the Ca$\^$2+/ mobilization and the stimulation of neuronal nitric oxide synthase (nNOS). Because G protein/PLC/PI turnover/[(Ca$\^$2+/])i/NOS pathway was supposed as a main pathway for the production of nitric oxide via muscarinic receptors, we studied on ml, m3 and m5 receptors. Stimulation of guanylate cyclase activity in detector neuroblastoma cells was used as an index of generation nitric oxide (NO) in CHO cells. The agonist carbachol increased the cGMP formation and the intracellular [Ca$\^$2+/] in concentration dependent manner in three types of receptors and the increased cGMP formation was significantly attenuated by scavenger of NO or inhibitor of NOS. m5 receptors was most efficiently coupled to stimulation of nNOS, And, the coupling efficiencies to the stimulation of neuronal nitric oxide synthase in three types of receptors were parallel with them to the Ca$\^$2+/ mobilization.

  • PDF

Association of Insulin Receptor Substrate-1 G972R Variant with Non-small Cell Lung Cancer Risk

  • Lee, Chang Youl;Ahn, Chul Min;Jeon, Jeong Hee;Kim, Hyung Jung;Kim, Se Kyu;Chang, Joon;Kim, Sung Kyu;Chang, Yoon Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • 제67권1호
    • /
    • pp.8-13
    • /
    • 2009
  • Background: The insulin receptor substrate-1 (IRS-1) is the primary docking molecule for the insulin-like growth factor I receptor (IGF-IR), and is required for activation of the phosphatidylinositol 3'-kinase (PI3K) pathway. IRS-1 activation of the (PI3K) pathway regulates IGF-mediated survival, enhancement of cellular motility and apoptosis. Therefore, we attempted to ascertain whether IRS-1 genetic variations affect an individual's risk for non-small cell lung cancer (NSCLC). Methods: Two-hundred and eighteen subjects, either diagnosed with NSCLC or control subjects, were matched by age, gender and smoking status. Genomic DNA from each subject was amplified by PCR and analyzed according to the restriction fragment length polymorphism (RFLP) profile to detect the IRS-1 G972R polymorphism. Results: The frequencies of each polymorphic variation, in the control population, were as follows: GG=103 (94.5%) and GR=6 (5.5%); for the NSCLC subjects, the genotypic frequencies were as follows: GG=106 (97.2%) and GR=3 (2.8%). We could not demonstrate statistically significant differences in the genotypic distribution between the NSCLC and the control subjects (p=0.499, Fisher's Exact test). The relative risk of NSCLC, associated with the IRS-1 G972R polymorphic variation, was 1.028 (95% CI; 0.63~9.90). In addition, we found no differences between polymorphic variants with regard to the histological subtype of NSCLC. Conclusion: We did not observe any noteworthy differences in the frequency of the IRS-1 G972R polymorphism in NSCLC patients, compared to control subjects. These results suggest suggesting that, in our study population, the IRS-1 G972R polymorphism does may not appear to be associated with an increased risk of NSCLC.

20(S)-ginsenoside Rh2 induces caspase-dependent promyelocytic leukemia-retinoic acid receptor A degradation in NB4 cells via Akt/Bax/caspase9 and TNF-α/caspase8 signaling cascades

  • Zhu, Sirui;Liu, Xiaoli;Xue, Mei;Li, Yu;Cai, Danhong;Wang, Shijun;Zhang, Liang
    • Journal of Ginseng Research
    • /
    • 제45권2호
    • /
    • pp.295-304
    • /
    • 2021
  • Background: Acute promyelocytic leukemia (APL) is a hematopoietic malignancy driven by promyelocytic leukemia-retinoic acid receptor A (PML-RARA) fusion gene. The therapeutic drugs currently used to treat APL have adverse effects. 20(S)-ginsenoside Rh2 (GRh2) is an anticancer medicine with high effectiveness and low toxicity. However, the underlying anticancer mechanisms of GRh2-induced PML-RARA degradation and apoptosis in human APL cell line (NB4 cells) remain unclear. Methods: Apoptosis-related indicators and PML-RARA expression were determined to investigate the effect of GRh2 on NB4 cells. Z-VAD-FMK, LY294002, and C 87, as inhibitors of caspase, and the phosphatidylinositol 3-kinase (PI3K) and tumor necrosis factor-α (TNF-α) pathways were used to clarify the relationship between GRh2-induced apoptosis and PML-RARA degradation. Results: GRh2 dose- and time-dependently decreased NB4 cell viability. GRh2-induced apoptosis, cell cycle arrest, and caspase3, caspase8, and caspase9 activation in NB4 cells after a 12-hour treatment. GRh2-induced apoptosis in NB4 cells was accompanied by massive production of reactive oxygen species, mitochondrial damage and upregulated Bax/Bcl-2 expression. GRh2 also induced PML/PML-RARA degradation, PML nuclear bodies formation, and activation of the downstream p53 pathway in NB4 cells. Z-VAD-FMK inhibited caspase activation and significantly reversed GRh2-induced apoptosis and PML-RARA degradation. GRh2 also upregulated TNF-α expression and inhibited Akt phosphorylation. LY294002, an inhibitor of the PI3K pathway, enhanced the antitumor effects of GRh2, and C 87, an inhibitor of the TNF-α pathway, reversed NB4 cell viability, and GRh2-mediated apoptosis in a caspase-8-dependent manner. Conclusion: GRh2 induced caspase-dependent PML-RARA degradation and apoptosis in NB4 cells via the Akt/Bax/caspase9 and TNF-α/caspase8 pathways.