• Title/Summary/Keyword: PI film

Search Result 334, Processing Time 0.025 seconds

Mobility Enhancement in a Pentacene Thin-film Transistor by Shortening the Intermolecular Distance (분자 간 거리 감소에 의한 펜타센 박막트랜지스터의 전하 이동도 향상)

  • Jung, Tae-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.500-505
    • /
    • 2012
  • In this study, the influence of the intermolecular distance on the charge mobility in a pentacene thin-film was investigated. In order to increase the mobility which depends on the ${\pi}$-overlap between molecules, the intermolecular distance was shortened by compressive force along the conduction channel. Pentacene thin-film was fabricated on flexible substrates bent outward at different radii to stretch the gate dielectric surface and then the substrates were unbent, producing the compressive force to the film. The result showed that the mobility increased proportionally to the strain applied during the pentacene deposition and the molecular packing inside a grain was not optimal for the charge transport.

Determining the Thickness of a Trilayer Thin-Film Structure by Fourier-Transform Analysis (푸리에 변환을 이용한 3층 구조 박막의 두께 측정)

  • Cho, Hyun-Ju;Won, Jun-Yeon;Jeong, Young-Gyu;Woo, Bong-Ju;Yoon, Jun-Ho;Hwangbo, Chang-Kwon
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.4
    • /
    • pp.143-150
    • /
    • 2016
  • The thickness of each layer in a multilayered system is determined by a Fourier-transform method using spectroscopic reflectance measurements. To verify this method, we first generate theoretical reflectance spectra for three layers, and these are fast-Fourier-transformed using our own Matlab program. Each peak of the Fourier-transformed delta function denotes the optical thickness of each layer, and these are transformed to physical thicknesses. The relative thickness error of the theoretical model is less than 1.0% while a layer's optical thickness is greater than 730 nm. A PI-(thin $SiO_2$)-PImultilayeredstructure produced by the bar-coating method was analyzed, and the thickness errors compared to SEM measurements. Even though this Fourier-transform method requires knowing the film order and the refractive index of each layer prior to analysis, it is a fast and nondestructive method for the analysis of multilayered structures.

Chemical reaction at Cu/polyimide interface (Cu/polyimide 계면에서의 화학반응)

  • 이연승
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.3
    • /
    • pp.494-503
    • /
    • 1997
  • We investigated the initial stages of formation of the Cu/polyimide interface using another two methods by X-ray photoelectron spectroscopy. : One, in-situ measurement with increasing of Cu deposition thickness onto polyimide(PI), the other, measurement with decreasing of Cu thickness of Cu/pI film by $Ar^+$ ion etching. From these results, we find that the chemical reactions exist in Cu/PI interface. However, the measured chemical reactions were different according to experimental method.

  • PDF

Electro-Optical Characteristics of Plastic STN Cell using photoalignment method (광배향을 이용한 플렉시블 STN 셀의 전기 광학 특성)

  • Bae, Yu-Han;Hwang, Jeoung-Yeon;Kim, Jong-Hwan;Nam, Ki-Hyung;Lee, Whee-Won;Kim, Kang-Woo;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1007-1009
    • /
    • 2004
  • We investigated the electro-optical(EO) performances of the super twisted nematic liquid crystal display(STN-LCD) on the polyimide(PI) surface with polymer film using rubbing and photoalignment method. Monodomain alignment of the plastic STN-LCD can be observed. A faster response time for the photoaligned plastic STN-LCD on the polyimide(PI) surfaces can be achieved than rubbingaligned plastic STN-LCD.

  • PDF

The Study on the Phase Transition of Langmuir Film by Brewster-Angle Microscope (BAM(Brewster-Angle Microscope)으로 관측한 Langmuir막의 상전이에 관한 연구)

  • Cho, Wan-Je;Song, Kyung-Ho;Park, Tae-Gone;Park, Keun-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.323-326
    • /
    • 2000
  • In this study, we used Brewster-Angle Microscope(BAM) to study on the molecular orientation of monolayer on the water surface. The behaviors of molecules on three different subphase have been observed. Reproducible $\pi$-A isotherm have been obtained only on information about phase transition by molecular area. BAM facilitates the observation of morphology by optical anisotropy and thickness in monolayer and multilayers as BAM is shown to be sensitive to anisotropy of film. Every transition was found by BAM technique, either as a dramatic change in degree of contrast or as a sudden alteration of molecular action and $\pi$-A isotherm.

  • PDF

A study on the curing characteristics of polyimide thin film fabricated by vapor deposition polymerization (진공증착중합법에 의해 제조된 6FDA/DDE 폴리이미드박막의 열처리에 따른 특성에 관한 연구)

  • Lee, B.J.;Kim, H.G.;Jin, Y.Y.;Park, G.B.;Kim, Y.B.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1552-1554
    • /
    • 1997
  • In this paper, thin films of PI were fabricated VDPM of dry processes which are easy to control the film's thickness and hard to pollute due to volatile solvents. From FT-IR, PAA thin films fabricated by VDP were changed to PI thin films by thermal curing. From AFM and ellipsometer experimental, the higher curing temperature is, the films thickness decreases and reflectance increases. Therefore, PI could be fabricated stable by increasing curing temperature.

  • PDF

Improvement of viewing angle characteristics using a VA-1/6$\pi$ cell (VA-1/6$\pi$셀을 이용한 시야각 특성의 개선)

  • 황정연;서대식;한은주;김재형
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.515-518
    • /
    • 2000
  • We studied the viewing angle characteristics of a negative dielectric anisotropy nematic liquid crystal (NLC) using the new vertical-alignment (VA)-1/6 cell on a rubbed polyimide (PI) surface. Good voltage-transmittance (V-T)characteristics using the new VA-1/6 cell without a negative compensation film were obtained. The iso-viewing angle characteristics using the new VA-1/6 cell without the negative compensation film can be achieved.

  • PDF

Thermal Conductivity Enhancement of Polyimide Film Induced from Exfoliated Graphene Prepared by Electrostatic Discharge Method (정전기 방전에 의해 제조된 흑연박리 그래핀 첨가 폴리이미드 막의 열전도 향상)

  • Lim, Chaehun;Kim, Kyung Hoon;An, Donghae;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.143-148
    • /
    • 2021
  • A thermally conductive 200 ㎛ thick polyimide-based film was made from a polyamic acid (PAA) precursor containing graphene prepared from graphite rod using an electrostatic discharge method in order to improve the thermal conductivity and expand the applicability of polyimide (PI) film. Properties of graphene produced by electrostatic discharge were measured by Raman spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy (XPS). As a result of Raman spectrum and XPS analyses of as-prepared graphene, the ID/IG ratio was 0.138 and C/O value was 24.91 which are excellent structural and surface chemical properties. Moreover, thermal conductivities of polyimide films increased exponentially according to graphene contents but when the graphene content exceeded 40%, the polyimide film could not maintain its shape. The thermal conductivity of carbonized PI film made from PAA containing 40 wt% of graphene was 51 W/mK which is greatly enhanced from the pristine carbonized PI film (1.9 W/mK). This result could be originated from superior properties of graphene prepared from the electrostatic discharge method.

Characteristics of Indium Tin Zinc Oxide Thin Film Transistors with Plastic Substrates (고분자 기판과 PECVD 절연막에 따른 ITZO 박막 트랜지스터의 특성 분석)

  • Yang, Dae-Gyu;Kim, Hyoung-Do;Kim, Jong-Heon;Kim, Hyun-Suk
    • Korean Journal of Materials Research
    • /
    • v.28 no.4
    • /
    • pp.247-253
    • /
    • 2018
  • We examined the characteristics of indium tin zinc oxide (ITZO) thin film transistors (TFTs) on polyimide (PI) substrates for next-generation flexible display application. In this study, the ITZO TFT was fabricated and analyzed with a SiOx/SiNx gate insulator deposited using plasma enhanced chemical vapor deposition (PECVD) below $350^{\circ}C$. X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) results revealed that the oxygen vacancies and impurities such as H, OH and $H_2O$ increased at ITZO/gate insulator interface. Our study suggests that the hydrogen related impurities existing in the PI and gate insulator were diffused into the channel during the fabrication process. We demonstrate that these impurities and oxygen vacancies in the ITZO channel/gate insulator may cause degradation of the electrical characteristics and bias stability. Therefore, in order to realize high performance oxide TFTs for flexible displays, it is necessary to develop a buffer layer (e.g., $Al_2O_3$) that can sufficiently prevent the diffusion of impurities into the channel.

Comparative Study on Hydrogen Behavior in InGaZnO Thin Film Transistors with a SiO2/SiNx/SiO2 Buffer on Polyimide and Glass Substrates

  • Han, Ki-Lim;Cho, Hyeon-Su;Ok, Kyung-Chul;Oh, Saeroonter;Park, Jin-Seong
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.749-754
    • /
    • 2018
  • Previous studies have reported on the mechanical robustness and chemical stability of flexible amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) on plastic substrates both in flat and curved states. In this study, we investigate how the polyimide (PI) substrate affects hydrogen concentration in the a-IGZO layer, which subsequently influences the device performance and stability under bias-temperature-stress. Hydrogen increases the carrier concentration in the active layer, but it also electrically deactivates intrinsic defects depending on its concentration. The influence of hydrogen varies between the TFTs fabricated on a glass substrate to those on a PI substrate. Hydrogen concentration is 5% lower in devices on a PI substrate after annealing, which increases the hysteresis characteristics from 0.22 to 0.55 V and also the threshold voltage shift under positive bias temperature stress by 2 ${\times}$ compared to the devices on a glass substrate. Hence, the analysis and control of hydrogen flux is crucial to maintaining good device performance and stability of a-IGZO TFTs.