• Title/Summary/Keyword: PI Current control

Search Result 416, Processing Time 0.031 seconds

An Improved Stationary Frame-based Digital Current Control Scheme for a PM Synchronous Motor

  • Kim Kyeong-Hwa;Youn Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.174-178
    • /
    • 2001
  • An improved stationary frame-based digital current control technique for a permanent magnet (PM) synchronous motor is presented. Generally, the stationary frame current controller is known to provide the advantage of a simple implementation. However, there are some unavoidable limitations such as a steady-state error and a phase delay in the steady-state. On the other hand, in the synchronous frame current regulator, the regulated currents are dc quantities and a zero steady-state error can be obtained through the integral control. However, the need to transform the signals between the stationary and synchronous frames makes the implementation of a synchronous frame regulator complex. Although the PI controller in the stationary frame gives a steady-state error and a phase delay, the control performance can be greatly improved by employing the exact decoupling control inputs for the back EMF, resulting in an ideal steady-state control characteristics irrespective of an operating condition as in the synchronous PI decoupling controller. However, its steady-state response may be degraded due to the inexact cancellation inputs under the parameter variations. To improve the control performance in the stationary frame, the disturbance is estimated using the time delay control. The proposed scheme is implemented on a PM synchronous motor using DSP TMS320C31 and the effectiveness is verified through the comparative simulations and experiments.

  • PDF

An Improved Stationary Frame-based Digital Current Control Scheme for a PM Synchronous Motor

  • Kim, Kyeong-Hwa;Young, Myung-Joong
    • Journal of Power Electronics
    • /
    • v.1 no.2
    • /
    • pp.88-98
    • /
    • 2001
  • An improved stationary frame-based digital current control technique for a permanent magnet(PM) synchronous motor is presented. Generally, the stationary frame current controller is known to provide the advantage of a simple implementation. However, there are some unavoidable limitations such as a steady-state error and a phase delay in the steady-state. On the other hand, in the synchronous frame current regulator the regulated currents are dc quantities and a zero steady-state error can be obtained through the integral control. However, the need to transform the signals between the stationary and synchronous frames makes the implementation of a synchronous frame regulator complex. Although the PI controller in the stationary frame gives a steady-state error and a phase delay, the control performance can be greatly improved by employing the exact decoupling control inputs for the back EMF., resulting in an ideal steady-state control characteristics irrespective of an operating condition as in the synchronous PI decoupling controller. However, its steady-state response may be degraded due to the inexact cancellation inputs under the parameter variations. To improve the control performance in the stationary frame, the disturbance is estimated using the time delay control. The proposed scheme is implemented on a PM synchronous motor using DSP TMS320C31 and the effectiveness is verified through the comparative simulations and experiments.

  • PDF

Extension of the Operating Speed for Vector-Controlled Induction Machine Drives in the Overmodulation Range

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.477-486
    • /
    • 2012
  • This paper proposes a novel current control scheme for vector-controlled induction machine (IM) drives in the overmodulation (OVM) range, with which the voltage utilization of the voltage-source inverter (VSI) can be maximized. In the OVM region, the original voltage reference is modified by changing its magnitude and angle, which causes the motor current to be distorted, resulting in a deterioration of the current control performance. To meet with this situation, the harmonic components in the feedback currents should be eliminated before being input to the PI current controllers. For this, a composite observer is applied to extract the fundamental and harmonic components from the distorted currents, which gives a good performance without a delay and the effect of a fundamental frequency variation. In addition, through a detailed analysis of the response of the PI current controllers in the OVM range, the effectiveness of using the composite observer is demonstrated. Simulation and experimental results for a 3-kW induction motor drive are shown to verify the validity of the proposed method.

A Systematic Engineering Approach to Design the Controller of the Advanced Power Reactor 1400 Feedwater Control System using a Genetic Algorithm

  • Tran, Thanh Cong;Jung, Jae Cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.58-66
    • /
    • 2018
  • This paper represents a systematic approach aimed at improving the performance of the proportional integral (PI) controller for the Advanced Power Reactor (APR) 1400 Feedwater Control System (FWCS). When the performance of the PI controller offers superior control and enhanced robustness, the steam generator (SG) level is properly controlled. This leads to the safe operation and increased the availability of the nuclear power plant. In this paper, a systems engineering approach is used in order to design a novel PI controller for the FWCS. In the reverse engineering stage, the existing FWCS configuration, especially the characteristics of the feedwater controller as well as the feedwater flow path to each SG from the FWCS, were reviewed and analysed. The overall block diagram of the FWCS and the SG was also developed in the reverse engineering process. In the re-engineering stage, the actual design of the feedwater PI controller was carried out using a genetic algorithm (GA). Lastly, in the validation and verification phase, the existing PI controller and the PI controller designed using GA method were simulated in Simulink/Matlab. From the simulation results, the GA-PI controller was found to exhibit greater stability than the current controller of the FWCS.

Development of Artificial Intelligent PI controller for Maximum Torque Control of Induction Motor (유도전동기의 최대토크 제어를 위한 인공지능 PI 제어기 개발)

  • Kang, Sung-Jun;Ko, Jae-Sub;Choi, Jung-Sik;Baek, Jung-Woo;Jang, Mi-Geum;Moon, Ju-Hui;Chung, Dong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.587-588
    • /
    • 2010
  • The maximum output torque developed by the machine is dependent on the allowable current rating and maximum voltage that the inverter can supply to the machine. Therefore, to use the inverter capacity fully, it is desirable to use the control scheme considering the voltage and current limit condition, which can yield the maximum torque per ampere over the entire speed range. This controller is controlled speed using artificial intelligent PI(AIPI) controller. Also, this paper is proposed control of maximum torque per ampere(MTPA) of induction motor. The performance of the proposed induction motor drive with maximum torque control using AIPI controller is verified by analysis results at dynamic operation conditions.

  • PDF

Dynamic Analysis of Double Excited 3-DOF Motor Modeling Using Equivalent Magnetic Circuit

  • Rhyu, Se-Hyun;Shin, Hye-Ung;Kim, Min-Soo;Kwon, Byung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.958-964
    • /
    • 2015
  • This paper implements a model of a double excited three-degree-of-freedom motor (3-DOF) coupled with a PI current controller for position control. The rotational trends of the rotor according to the applied steps are identified using a motion equation. The simulation model is a complete electrical and mechanical model of a 3-DOF motor, which mainly consists of mechanical torque equations, a nonlinear equivalent magnetic circuit, and a PI current controller. This machine is tested using the manufactured control board using the same conditions as in the simulation, where the experimental results also verify the accuracy of the simulation results.

Design and Implementation of a Current Controller for Boost Converters Using a DSP (DSP를 이용한 부스트 컨버터의 전류 제어기 설계 및 구현)

  • Lee, Kwang-Woon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.259-265
    • /
    • 2012
  • This paper introduces a method for design and implementation of a current controller for boost converter operating in continuous conduction mode (CCM) using a digital signal processor (DSP). A Proportional-Integral (PI) type current controller outputs an average voltage command for inductor, used in the input side of the boost converter, and the duty-ratio of PWM (pulse width modulation) signal for switching device is directly calculated from the average voltage command. The gains of the PI current controller are selected such that the current response characteristics are the same as those of a first-order low-pass filter. The proposed current control scheme is implemented using a DSP based on fixed-point math operations and an experimental study has been performed to validate the proposed method.

The Design of a Position Controller for the Linear Brushless D.C. Motor Using New Auto-tuning PI control Method (새로운 Auto-Tuning PI 제어 방법을 이용한 선형 추진 브러시리스 직류 전동기에 대한 위치 제어기 설계)

  • 최중경;박승엽;전인효
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.1121-1124
    • /
    • 1999
  • Linear motor is able to produce line movement without rotary-to-line converter at the system required line moving. Thus Linear motor has no gear, screw, belt for line movement. Therefore it has some advantage which decrease friction loss, noise, vibration, maintenance effort and prevent decay of control performance due to backlash. This paper proposes the estimation method of unknown parameters from the BLDC Linear motor and determine the PI controller gain through this estimation. Each control movement that is current, speed, position control, and PWM wave generation is performed on Processor, which is DSP(Digital Signal Processor), having high speed performance. PI theory is adopted to each for controller for control behavior More fast convergence to command position is accomplished by applying the new velocity locus which derived from position error.

  • PDF

Digital Control of Secondary Active Clamp Phase-Shifted Full-Bridge Converters

  • Che, Yanbo;Ma, Yage;Ge, Shaoyun;Zhu, Dong
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.421-431
    • /
    • 2014
  • A DSP-based self-adaptive proportional-integral (PI) controller to control a DC-DC converter is proposed in this paper. The full-bridge topology is adopted here to obtain higher power output capability and higher conversion efficiency. The converter adopts the zero-voltage-switching (ZVS) technique to reduce the conduction losses. A parallel secondary active clamp circuit is added to deal with the voltage overshoot and ringing effect on the transformer's secondary side. A self-adaptive PI controller is proposed to replace the traditional PI controller. Moreover, the designed converter adopts the constant-current and constant-voltage (CC-CV) output control strategy. The secondary active clamp mechanism is discussed in detail. The effectiveness of the proposed converter was experimentally verified by an IGBT-based 10kW prototype.

Drive System Design for a Permanent Magnet Motor with Independent Excitation Winding for an Electric Bicycle

  • Son, Young-Dae;Kang, Gyu-Hong
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.623-630
    • /
    • 2010
  • This paper presents the implementation and characteristic analysis of a drive system for a three-phase permanent magnet motor with independent excitation winding that is applicable for electric bicycles. The design features improves the phase current waveform, output power, and torque by using advance angle control. This adjusts the phase angle of each phase current in relation to back EMF. In addition, a DC-side PI current control is performed through PWM generation circuit using a low-cost one-chip microcontroller and a CPLD chip, resulting in reduced system costs. Finally, the validity of this control scheme for driving electric bicycles and output/torque improvement characteristics are verified through analysis and experimental results.