• Title/Summary/Keyword: PHENOLOGY

Search Result 222, Processing Time 0.024 seconds

A new record of Viola inconspicua (Violaceae) from Korea

  • KIM, Kyeonghee;KIM, Jung-Hyun;KO, Soon Yeol;LEE, Kang-Hyup;KIM, Jin-Seok
    • Korean Journal of Plant Taxonomy
    • /
    • v.51 no.2
    • /
    • pp.166-170
    • /
    • 2021
  • Distribution of Viola inconspicua is newly discovered in Korea. This species was collected from grassy fields and roadsides in Jeju-si and Seogwipo-si, Jejudo Island. V. inconspicua shares several characteristics (i.e., purple or pale purple flowers, triangular leaf blades, winged petioles, and a linear-lanceolate stipules) with the related species V. mandshurica and V. yedoensis. However, V. inconspicua can be easily distinguished from other species by the following characteristics: leaf base (cordate vs. truncate to attenuate), and spur (short, 2-4 mm long vs. longer, 5-8 mm long). Here, we describe and illustrate of V. inconspicua. In addition, the identification key to allied species, photographs in its habitat, distribution, ecology, and phenology are provided as well. The Korean name for the species is given as 'Hwa-sal-ip-je-bi-kkot', considering the shape of its leaves.

Arctium tomentosum (Asteraceae): A new report of a native genus in the flora of Mongolia

  • JAVZANDOLGOR, Chuluunbat;BAASANMUNKH, Shukherdorj;TSEGMED, Zagarjav;OYUNTSETSEG, Batlai;GUNDEGMAA, Vanjil;CHOI, Hyeok Jae
    • Korean Journal of Plant Taxonomy
    • /
    • v.51 no.4
    • /
    • pp.391-394
    • /
    • 2021
  • Arctium tomentosum Mill. (Asteraceae), from Ulaanbaatar in the Khentei phytogeographical region of Mongolia, is recognized here as a new genus and species of the flora of Mongolia. Arctium differs from other genera of Asteraceae by the hooked apex of the involucral bracts. While A. tomentosum is most similar to A. lappa, it is easily distinguished by the glandular hairs of the corolla limb and the widened inner involucral bracts. Taxonomic notes, a description of the morphology, detailed photos, habitat information, the phenology and a distribution map of A. tomentosum are provided.

Phenology and Population Dynamics of Scirpus fluviatilis (Torr.) A. Gray in the Littoral Zone of the Upo Wetland (우포늪 연안대에서 매자기의 화력학과 개체군 변화)

  • Seo, Hye-Ran;Park, Sang-Yong;Oh, Kyung-Hwan
    • Journal of Wetlands Research
    • /
    • v.11 no.3
    • /
    • pp.49-59
    • /
    • 2009
  • Seasonal changes of the growth characteristics and biomass of Scirpus fluviatilis, a aquatic emergent vascular plant, were investigated to reveal the phenology and the population dynamics and to provide the fundamental resources for the restoration counterplan of the wetland vegetation in the littoral zone of the Upo wetland, Changnyeong-gun, Gyeongsangnam-do, Korea from March 2006 to November 2006. Scirpus fluviatilis was distributed commonly in Upo, Mokpo, Sajipo, Jokjibyeol, and Topyeongcheon upstream and downstream of Upo wetland, and the density was highest in Mokpo. Distribution range for the water depth was 9~49cm, and the highest shoot density in 26~49cm, and the mean shoot density was $119/m^2$, and the mean shoot length was 122.3cm on May 28. The number of the tuber was $104.5/0.25m^2$, and the living tubers were 84.2%. The mean fresh biomass of the living tubers was 3.0g, and those of 1~4g was most as 57.9%. Germination rates of the living tubers was 43.8%, and the maximum rate was in 7~9g and more than 10g. In the pot cultivation, the shoot density of the germinated tubers and the dormant tubers were highest as 13.5 and 9.7, respectively in early August. In the field study, the shoot density had few change before typhoon damage, while the density increased abruptly in November after flooding accompanied with the typhoon 'Ewiniar'. The shoot length in the pot cultivation and in the field study were 100~116cm and 60~170cm, respectively in the growth-end. Biomass allocation rates into the stem, leaf, flower, and underground parts were 8.9%, 6.6%, 0%, and 84.5%, respectively in the pot cultivation of the germinated tubers, and those of the dormant tubers were 7.1%, 7.1%, 0%, and 85.8%, respectively. The tuber number increased to 1.4~4.1 times by the growth-end, so it is concluded that Scirpus fluviatilis is mostly propagated by the vegetative reproduction.

  • PDF

Modeling of Vegetation Phenology Using MODIS and ASOS Data (MODIS와 ASOS 자료를 이용한 식물계절 모델링)

  • Kim, Geunah;Youn, Youjeong;Kang, Jonggu;Choi, Soyeon;Park, Ganghyun;Chun, Junghwa;Jang, Keunchang;Won, Myoungsoo;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.627-646
    • /
    • 2022
  • Recently, the seriousness of climate change-related problems caused by global warming is growing, and the average temperature is also rising. As a result, it is affecting the environment in which various temperature-sensitive creatures and creatures live, and changes in the ecosystem are also being detected. Seasons are one of the important factors influencing the types, distribution, and growth characteristics of creatures living in the area. Among the most popular and easily recognized plant seasonal phenomena among the indicators of the climate change impact evaluation, the blooming day of flower and the peak day of autumn leaves were modeled. The types of plants used in the modeling were forsythia and cherry trees, which can be seen as representative plants of spring, and maple and ginkgo, which can be seen as representative plants of autumn. Weather data used to perform modeling were temperature, precipitation, and solar radiation observed through the ASOS Observatory of the Korea Meteorological Administration. As satellite data, MODIS NDVI was used for modeling, and it has a correlation coefficient of about -0.2 for the flowering date and 0.3 for the autumn leaves peak date. As the model used, the model was established using multiple regression models, which are linear models, and Random Forest, which are nonlinear models. In addition, the predicted values estimated by each model were expressed as isopleth maps using spatial interpolation techniques to express the trend of plant seasonal changes from 2003 to 2020. It is believed that using NDVI with high spatio-temporal resolution in the future will increase the accuracy of plant phenology modeling.

Estimation of the Second Flight Season of Chilo suppressalis (Lepidoptera: Crambidae) Adults in the Northeastern Chinese Areas (중국 동북부 지역에서 이화명나방(Chilo suppressalis)(Crambidae) 2화기 성충 발생 시기 추정)

  • Jung, Jin Kyo;Kim, Eun Young;Yang, Woonho;Lee, Seuk-Ki;Shin, Myeong Na;Yang, Jung-Wook;Ju, Hongguang;Jin, Dongcun;Pao, Jin;Wang, Jichun;Zhu, Feng
    • Korean journal of applied entomology
    • /
    • v.61 no.2
    • /
    • pp.335-347
    • /
    • 2022
  • We investigated the emergence patterns of Chilo suppressalis (Lepidoptera: Crambidae) adults using sex pheromone traps in the three northeastern areas, Dandong (40°07'N 124°23'E) (Liaoning province), and Gongzhuling (43°30'N 124°49') and Longjing (42°46'N 129°26'E) (Jilin province), China, in 2020 and 2021. Two times of adult flight seasons were isolated clearly during the rice growing periods in the all areas, in which the first season from mid May to late July, and the second season from mid July to mid September were observed. The adult emergence seasons in the areas at higher latitude were later than that at lower latitude. Using the adult emergence data during the first flight seasons, the second flight seasons were estimated through insect phenology modelling, and compared with the observed data. Temperature-dependent life history models (developmental rate, development completion, survival rate, adult aging rate, total fecundity, oviposition completion, and adult survival completion) were collected or constructed for each life stage of C. suppressalis, in which the data from the four previous studies were used. Those models were combined in an insect phenology estimation software, PopModel, and operated for the observed areas. In the results, the phenology modelling operated with the models based on the data of shorter larval periods in the previous studies estimated more accurately the second flight seasons. In 2021, we investigated the change of damaged hill ratios of rice with observing the adult emergence at Dandong and Longjing, 2021. The increase periods of damaged hill ratios of rice were observed two times during the total rice cultivation season, which may be caused by different generations of C. suppressalis larvae.

Prediction of Spring Flowering Timing in Forested Area in 2023 (산림지역에서의 2023년 봄철 꽃나무 개화시기 예측)

  • Jihee Seo;Sukyung Kim;Hyun Seok Kim;Junghwa Chun;Myoungsoo Won;Keunchang Jang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.427-435
    • /
    • 2023
  • Changes in flowering time due to weather fluctuations impact plant growth and ecosystem dynamics. Accurate prediction of flowering timing is crucial for effective forest ecosystem management. This study uses a process-based model to predict flowering timing in 2023 for five major tree species in Korean forests. Models are developed based on nine years (2009-2017) of flowering data for Abeliophyllum distichum, Robinia pseudoacacia, Rhododendron schlippenbachii, Rhododendron yedoense f. poukhanense, and Sorbus commixta, distributed across 28 regions in the country, including mountains. Weather data from the Automatic Mountain Meteorology Observation System (AMOS) and the Korea Meteorological Administration (KMA) are utilized as inputs for the models. The Single Triangle Degree Days (STDD) and Growing Degree Days (GDD) models, known for their superior performance, are employed to predict flowering dates. Daily temperature readings at a 1 km spatial resolution are obtained by merging AMOS and KMA data. To improve prediction accuracy nationwide, random forest machine learning is used to generate region-specific correction coefficients. Applying these coefficients results in minimal prediction errors, particularly for Abeliophyllum distichum, Robinia pseudoacacia, and Rhododendron schlippenbachii, with root mean square errors (RMSEs) of 1.2, 0.6, and 1.2 days, respectively. Model performance is evaluated using ten random sampling tests per species, selecting the model with the highest R2. The models with applied correction coefficients achieve R2 values ranging from 0.07 to 0.7, except for Sorbus commixta, and exhibit a final explanatory power of 0.75-0.9. This study provides valuable insights into seasonal changes in plant phenology, aiding in identifying honey harvesting seasons affected by abnormal weather conditions, such as those of Robinia pseudoacacia. Detailed information on flowering timing for various plant species and regions enhances understanding of the climate-plant phenology relationship.

Research Status and Future Subjects to Predict Pest Occurrences in Agricultural Ecosystems Under Climate Change (기후변화에 따른 농업생태계 내 해충 발생 예측을 위한 연구 현황 및 향후 과제)

  • Jung, Jong-Kook;Lee, Hyoseok;Lee, Joon-Ho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.368-383
    • /
    • 2014
  • Climate change is expected to affect population density, phenology, distribution, morphological traits, reproduction and genetics of insects, and even in the extinction of insects. To develop novel research subjects for predicting climate change effect, basic information about biological and ecological data on insect species should be compiled and reviewed. For this reason, this study was conducted to collect the biological information on insect pests that are essential for predicting potential damage caused by insect pests in future environment. In addition, we compared domestic and foreign research trends regarding climate change effect and suggested future research subjects. Domestic researchers were rather narrow in the subject, and were mostly conducted based on short-term monitoring data to determine relationship between insects and environmental variables. On the other hand, foreign researches studied on various subjects to analyze the effect of climate change, such as changes in distribution of insect using long-term monitoring data or their prediction using population parameters and models, and monitoring of the change of the insect community structure. To determine change of the phenology, distribution, overwintering characteristics, and genetic structures of insects under climate change through development of monitoring technique, in conclusion, further researches are needed. Also, development of population models for major or potential pests is important for prediction of climate change effects.

Prediction of Silking Date of Corn Hybrids Using Beta Function Model in South Korea (Beta 함수 모형을 이용한 국내 옥수수 품종의 출사기 예측)

  • Shim, Kyo-Moon;Kim, Yong-Seok;Lee, Jin-Seok;Jung, Myung-Pyo;Choi, In-tae;Kim, Hojung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.3
    • /
    • pp.102-109
    • /
    • 2017
  • A temperature-based Beta function model was developed for corn hybrids (Zea mays L.). The beta function based on the hourly temperature was fitted to the phenology data (silking date) obtained for six years from 2008 through 2013 at four survey sites. Using the Beta function model, silking dates for two corn hybrids with the different ecotype ('Danok3', 'Ilmichal') were estimated over two years from 2014 through 2015 at four sites, and then the performance of the model was evaluated based on the data for the same period. The silking dates estimated by the model were predicted earlier than those observed at survey sites. Still, the correlation between estimates and observation was relatively high (r=0.859). The accuracy of the model differed by the survey site and the year, which was likely due to the considerably large standard deviation of the parameter calibrated in this study.

Detection of Decay Leaf Using High-Resolution Satellite Data (고해상도 위성자료를 활용한 마른 잎 탐지)

  • Sim, Suyoung;Jin, Donghyun;Seong, Noh-hun;Lee, Kyeong-sang;Seo, Minji;Choi, Sungwon;Jung, Daeseong;Han, Kyung-soo
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.3
    • /
    • pp.401-410
    • /
    • 2020
  • Recently, many studies have been conducted on the changing phenology on the Korean Peninsula due to global warming. However, because of the geographical characteristics, research on plant season in autumn, which is difficult to measure compared to spring season, is insufficient. In this study, all leaves that maple and fallen leaves were defined as 'Decay leaves' and decay leaf detection was performed based on the Landsat-8 satellite image. The first threshold value of decay leaves was calculated by using NDVI and the secondary threshold value of decay leaves was calculated using by NDWI and the difference of spectral characteristics with green leaves. POD, FAR values were used to verify accuracy of the dry leaf detection algorithm in this study, and the results showed high accuracy with POD of 98.619 and FAR of 1.203.

A Feasibility Study of a Field-specific Weather Service for Small-scale Farms in a Topographically Complex Watershed (지형이 복잡한 집수역의 소규모농장에 맞춘 기상서비스의 실현가능성)

  • Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.4
    • /
    • pp.317-325
    • /
    • 2015
  • An adequate downscaling of synoptic forecasts is a prerequisite for improved agrometeorological service to rural areas in South Korea where complex terrains and small farms are common. In this study, geospatial schemes based on topoclimatology were used to scale down the Korea Meteorological Administration (KMA) temperature forecasts to the local scale (~30 m) across a rural catchment. Then, using these schemes, local temperatures were estimated at 14 validation sites at 0600 and 1500 LST in 2013/2014 and were compared with the observations. The estimation errors were substantially reduced for both 0600 and 1500 LST temperatures when compared against the uncorrected KMA products. The improvement was most notable at low lying locations for the 0600 temperature and at the locations on west- and south-facing slopes for the 1500 LST temperature. Using the downscaled real-time temperature data, a pilot service has started to provide the field-specific weather information tailored to meet the requirements of small-scale farms. For example, the service system makes a daily outlook on the phenology of crop species grown in a given field using the field-specific temperature data. When the temperature forecast is given for next morning, a frost risk index is calculated according to a known relationship of phenology and frost injury. If the calculated index is higher than a pre-defined threshold, a warning is issued and delivered to the grower's cellular phone with relevant countermeasures to help protect crops against frost damage.