DOI QR코드

DOI QR Code

A Feasibility Study of a Field-specific Weather Service for Small-scale Farms in a Topographically Complex Watershed

지형이 복잡한 집수역의 소규모농장에 맞춘 기상서비스의 실현가능성

  • Yun, Jin I. (College of Life Science, Kyung Hee University)
  • 윤진일 (경희대학교 식물환경신소재공학과)
  • Received : 2015.10.16
  • Accepted : 2015.11.10
  • Published : 2015.12.30

Abstract

An adequate downscaling of synoptic forecasts is a prerequisite for improved agrometeorological service to rural areas in South Korea where complex terrains and small farms are common. In this study, geospatial schemes based on topoclimatology were used to scale down the Korea Meteorological Administration (KMA) temperature forecasts to the local scale (~30 m) across a rural catchment. Then, using these schemes, local temperatures were estimated at 14 validation sites at 0600 and 1500 LST in 2013/2014 and were compared with the observations. The estimation errors were substantially reduced for both 0600 and 1500 LST temperatures when compared against the uncorrected KMA products. The improvement was most notable at low lying locations for the 0600 temperature and at the locations on west- and south-facing slopes for the 1500 LST temperature. Using the downscaled real-time temperature data, a pilot service has started to provide the field-specific weather information tailored to meet the requirements of small-scale farms. For example, the service system makes a daily outlook on the phenology of crop species grown in a given field using the field-specific temperature data. When the temperature forecast is given for next morning, a frost risk index is calculated according to a known relationship of phenology and frost injury. If the calculated index is higher than a pre-defined threshold, a warning is issued and delivered to the grower's cellular phone with relevant countermeasures to help protect crops against frost damage.

우리나라 농촌은 지형이 복잡하고 소규모 농장이 많아 농업기상서비스 개선을 위해서는 먼저 기상청 종관 예보의 규모축소가 필요하다. 지형기후학에 근거한 공간정보기술을 이용하여 기상청의 기온예보자료 가운데 0600과 1500 LST자료를 선정된 집수역에 대해 30 m급의 국지규모로 상세화하고, 14개 관측소의 실측기온 자료를 2013년부터 2014년까지 수집하여 비교하였다. 그 결과 0600 LST기온의 경우 집수역 가운데 고도가 낮은 곳에서, 1500 LST 기온의 경우 계곡의 서향 및 남향 사면에서 정확도가 크게 개선되는 것을 확인하였다. 상세화 한 기온실황자료를 이용하여 지역 내 소규모 농장을 대상으로 하는 시범서비스를 시작하였으며 농장 맞춤 기상정보를 제공하고 있다. 예컨대 이 서비스시스템은 기온자료를 토대로 작물의 발육단계를 추정하고, 발육단계별 최저기온에 따른 서리해 발생 관계식에 의해 내일 아침 예보기온의 서리위험 여부를 판정한다. 만약 서리위험도가 미리 설정된 기준을 넘으면 농장주의 휴대폰으로 대응지침과 함께 서리해 경보를 발송하여 피해를 예방할 수 있도록 도와준다.

Keywords

References

  1. Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998: Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO irrigation and drainage paper 56. UN-FAO, Rome, Italy, 333 pp.
  2. Barry, R. G., 1992: Mountain Weather and Climate. 2nd ed. Routledge, 402 pp.
  3. Bolstad, P.V., L. Swift, F. Collins, and J. Regniere, 1998: Measured and predicted air temperatures at basin to regional scales in the southern Appalachian Mountains. Agricultural and Forest Meteorology 91, 161-176. https://doi.org/10.1016/S0168-1923(98)00076-8
  4. Chung, U., H. H. Seo, K. H. Hwang, B. S. Hwang, J. Choi, J. T. Lee, and J. I. Yun, 2006: Minimum temperature mapping over complex terrain by estimating cold air accumulation potential. Agricultural and Forest Meteorology 137, 15-24. https://doi.org/10.1016/j.agrformet.2005.12.011
  5. Chung, U, H.-C. Seo, J. I. Yun, S.-J. Jeon, K. H. Moon, H.-H. Seo, and Y. S. Kwon, 2009: Extrapolation of daily maximum temperature in a mountainous terrain. Asia-Pacific Journal of Atmospheric Sciences 45, 473-482.
  6. Fridley, J. D., 2009: Downscaling climate over complex terrain: High finescale (<1000 m) spatial variation of nearground temperatures in a montane forested landscape (Great Smoky Mountains). Journal of Applied Meteorology and Climatology 48, 1033-1049. https://doi.org/10.1175/2008JAMC2084.1
  7. Geiger, R., R. H. Aron, and P. Todhunter, 2003: The Climate near the Ground. 6th ed. Rowman and Littlefield, 584 pp.
  8. Glahn, H. R., and D. P. Ruth, 2003: The new digital forecast database of the National Weather Service. Bulletin of American Meteorological Society 84, 195-201. https://doi.org/10.1175/BAMS-84-2-195
  9. Gobin, A., A. M. Tarquis, and N. R. Dalezios, 2013: Weatherrelated hazards and risks in agriculture. Natural Hazards and Earth System Science 13, 2599-2603. https://doi.org/10.5194/nhess-13-2599-2013
  10. Jarvis, C. H., and N. Stuart, 2001: A comparison among strategies for interpolating maximum and minimum daily air temperatures. Part I: The selection of "Guiding" topographic and land cover variables. Journal Applied Meteorology 40, 1060-1074. https://doi.org/10.1175/1520-0450(2001)040<1060:ACASFI>2.0.CO;2
  11. Kim, S. O., J. H. Kim, D. J. Kim, and J. I. Yun, 2012: Wind effect on the distribution of daily minimum temperature across a cold pooling catchment. Korean Journal of Agricultural and Forest Meteorology 14, 277-282. (in Korean with English abstract), DOI: 10.5532/KJAFM.2012.14.4.277.
  12. Kim, S. O., and J. I. Yun, 2011: A quantification method for the cold pool effect on nocturnal temperature in a closed catchment. Korean Journal of Agricultural and Forest Meteorology 13(4), 176-184. (in Korean with English abstract), DOI: 10.5532/KJAFM.2011.13.4.176.
  13. Kim, S. O., and J. I. Yun, 2013: Relationship between midday air temperature and solar irradiance over sloping surfaces under cloudless conditions. Korean Journal of Agricultural and Forest Meteorology 15, 291-297. (In Korean with English abstract), DOI: 10.5532/KJAFM.2013.15.4.291.
  14. Kim, S. O., and J. I. Yun, 2014: Improving usage of the Korea Meteorological Administration's digital forecasts in agriculture: III. Correction for advection effect on determination of daily maximum temperature over sloped surfaces. Korean Journal of Agricultural and Forest Meteorology 16(4), 297-303. https://doi.org/10.5532/KJAFM.2014.16.4.297
  15. Kondratyev, K. Y., and M. P. Federova, 1977: Radiation Regime of Inclined slopes. WMO Technical Note No. 152.
  16. Nalder, I. A., and R.W. Wein, 1998: Spatial interpolation of climatic normals: test of a new method in the Canadian boreal forest. Agricultural and Forest Meteorology 92, 211-225 https://doi.org/10.1016/S0168-1923(98)00102-6
  17. Regniere, J., 1996: A generalized approach to landscapewide seasonal forecasting with temperature-driven simulation models. Environmental Entomology 25, 869-881. https://doi.org/10.1093/ee/25.5.869
  18. Sievers, U., and W. G. Zdunkowski, 1986: A micro-scale urban climate model. Beitrage zur Physik der Atmosphare 69(1), 13-40.
  19. Thornton, P. E., S. W. Running, and M. A. White, 1997: Generating surfaces of daily meteorological variables over large regions of complex terrain. Journal of Hydrology 190, 214-251. https://doi.org/10.1016/S0022-1694(96)03128-9
  20. Yun, J. I., S.-O. Kim, J.-H. Kim, and D.-J. Kim, 2013: User-specific agrometeorological service to local farming community: a case study. Korean Journal of Agricultural and Forest Meteorology 15, 320-331. (In Korean with English abstract), DOI: 10.5532/KJAFM.2013.15.4.320.

Cited by

  1. Improving the Usage of the Korea Meteorological Administration's Digital Forecasts in Agriculture: V. Field Validation of the Sky-condition based Lapse Rate Estimation Scheme vol.18, pp.3, 2016, https://doi.org/10.5532/KJAFM.2016.18.3.135