DOI QR코드

DOI QR Code

Research Status and Future Subjects to Predict Pest Occurrences in Agricultural Ecosystems Under Climate Change

기후변화에 따른 농업생태계 내 해충 발생 예측을 위한 연구 현황 및 향후 과제

  • Jung, Jong-Kook (Entomology Program, Department of Agricultural Biotechnology, Seoul National University) ;
  • Lee, Hyoseok (Entomology Program, Department of Agricultural Biotechnology, Seoul National University) ;
  • Lee, Joon-Ho (Entomology Program, Department of Agricultural Biotechnology, Seoul National University)
  • 정종국 (서울대학교 농생명공학부 곤충학전공) ;
  • 이효석 (서울대학교 농생명공학부 곤충학전공) ;
  • 이준호 (서울대학교 농생명공학부 곤충학전공)
  • Received : 2014.10.13
  • Accepted : 2014.11.10
  • Published : 2014.12.30

Abstract

Climate change is expected to affect population density, phenology, distribution, morphological traits, reproduction and genetics of insects, and even in the extinction of insects. To develop novel research subjects for predicting climate change effect, basic information about biological and ecological data on insect species should be compiled and reviewed. For this reason, this study was conducted to collect the biological information on insect pests that are essential for predicting potential damage caused by insect pests in future environment. In addition, we compared domestic and foreign research trends regarding climate change effect and suggested future research subjects. Domestic researchers were rather narrow in the subject, and were mostly conducted based on short-term monitoring data to determine relationship between insects and environmental variables. On the other hand, foreign researches studied on various subjects to analyze the effect of climate change, such as changes in distribution of insect using long-term monitoring data or their prediction using population parameters and models, and monitoring of the change of the insect community structure. To determine change of the phenology, distribution, overwintering characteristics, and genetic structures of insects under climate change through development of monitoring technique, in conclusion, further researches are needed. Also, development of population models for major or potential pests is important for prediction of climate change effects.

기후변화는 곤충의 밀도와 분포, 몸의 형태와 개체의 크기 등 생물학적인 형질 변화, 생식 및 유전적 특성, 그리고 멸종 등에 영향을 미칠 것으로 예상되고 있다. 기후변화의 영향을 예측하여 피해를 줄이기 위해서는 분산되어 있는 곤충 종별 기본적인 생물학적/생태학적 정보들을 종합하여 검토할 필요가 있다. 따라서 본 연구는 기후 및 환경의 변화에 대한 곤충, 특히 해충의 발생 변화 예측에 필요한 생물학적 정보를 정리하여 이를 활용한 미래 피해 예측을 위한 기초 자료를 제공하고자 수행하였다. 또한 국내외 문헌을 비교 분석하여 국내에서 기후변화 연구를 수행하는데 있어 제한 요인들을 확인하고 향후 필요한 연구소요를 제시하고자 하였다. 국내의 연구들은 단기 모니터링 자료를 이용하여 환경 요인과의 관계를 분석하는 수준에 그치고 있는 반면, 국외 연구들은 장기 모니터링 자료를 이용한 분포 변화 분석이나 기 개발된 생물 종의 파라미터를 이용한 발생 및 분포 변화 예측 그리고 곤충 군집의 구성 변화를 모니터링하는 등 다양한 내용을 주제로 기후변화의 영향을 연구하고 있었다. 결론적으로 기후변화에 대응하기 위해서는 체계적인 모니터링 기술 개발을 통해 곤충의 계절발생, 분포, 월동 특성 및 유전적 구조 변화에 대한 연구가 필수적이며, 주요 해충 및 잠재적인 해충에 대한 기후변화의 영향을 예측하기 위해 곤충 개체군 모델의 개발 역시 중요한 부분이 될 것이다.

Keywords

References

  1. Agrell, J., E. P. McDonald, R. L. Lindroth, 2000: Effects of $CO_$2 and light on tree phytochemistry and insect performance. Oikos 88, 259-272. https://doi.org/10.1034/j.1600-0706.2000.880204.x
  2. Ahn, J. J., C. Y. Yang, and C. Jung, 2012: Model of Grapholita molesta spring emergence in pear orchards based on statistical information criteria. Journal of Asia-Pacific Entomology 15, 589-593. https://doi.org/10.1016/j.aspen.2012.04.002
  3. Andrew, N. R., and L. Hughes, 2005: Diversity and assemblage structure of phytophagous Hemiptera along a latitudinal gradient: predicting the potential impacts of climate change. Global Ecology and Biogeography 14, 249-262. https://doi.org/10.1111/j.1466-822x.2005.00149.x
  4. Asch, M., P. H. Tienderen, L. J. M. Holleman, and M.E. Visser, 2007: Predicting adaptation of phenology in response to climate change, an insect herbivore example. Global Change Biology 13(8), 1596-1604. https://doi.org/10.1111/j.1365-2486.2007.01400.x
  5. Ashworth, A.C. 1996: The response of arctic Carabidae (Coleoptera) to climate change based on the fossil record of the Quaternary Period. Annales Zoologici Fennici 33(1), 125-131.
  6. Awmack, C.S., and S. R. Leather, 2002: Host plant quality and fecundity in herbivorous insects. Annual Review of Entomology 47, 817-844. https://doi.org/10.1146/annurev.ento.47.091201.145300
  7. Bae, S. D., H. J. Kim, C. G. Park, G. H. Lee, and S. T. Park, 2005: The development and oviposition of bean bug, Riptortus clavatus Thunberg (Hemiptera: Alydidae) at temperature conditions. Korean Journal of Plant Protection 44(4), 325-330. (in Korean with English abstract)
  8. Bae, S. D., K. B. Park, and Y. J. Oh, 1997: Effect of temperature and food source on the egg and larval development of tobacco cutworm, Spodoptera litura Fabricius. Korean Journal of Applied Entomology 36(1), 48-54. (in Korean with English abstract)
  9. Bae, S. D., Y. H. Song, and Y. D. Park, 1987: Effects of temperature conditions on the growth and oviposition of brown planthopper, Nilaparvata lugens $St{\aa}l$. Korean Journal of Plant Protection 26(1), 13-23. (in Korean with English abstract)
  10. Baker, R. H. A., C. E. Sansford, C.H. Jarvis, R. J. C. Cannon, A. MacLeod, and K. F. A. Walters, 2000: The role of climatic mapping in predicting the potential geographical distribution of non-indigenous pests under current and future climates. Agriculture, Ecosystems & Environment 82(1-3), 57-71. https://doi.org/10.1016/S0167-8809(00)00216-4
  11. Bale, J. S., and S. A. Hayward, 2010: Insect overwintering in a changing climate. The Journal of Experimental Biology 213, 980-994. https://doi.org/10.1242/jeb.037911
  12. Bale, J. S., G. J. Masters, I. D. Hodkinson, C. Awmack, T.M. Bezemer, V. K. Brown, J. Butterfield, A. Buse, J. C. Coulson, J. Farrar, J. E. G. Good, R. Harrington, S. Hartley, T. H. Jones, R. Lindroth, M. C. Press, I. Symrnioudis, A.D. Watt, and J. B. Whittaker, 2002: Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology 8, 1-16. https://doi.org/10.1046/j.1365-2486.2002.00451.x
  13. Battisti, A., M. Stastny, E. Buffo, and S. Larsson, 2006: A rapid altitudinal range expansion in the pine processionary moth produced by the 2003 climatic anomaly. Global Change Biology 12(4), 662-671. https://doi.org/10.1111/j.1365-2486.2006.01124.x
  14. Bounfour, M., and L. K. Tanigoshi, 2001: Effect of temperature on development and demographic parameters of Tetranychus urticae and Eotetranychus carpini borealis (Acari: Tetranychidae). Annals of the Entomological Society of America 94(3), 400-404. https://doi.org/10.1603/0013-8746(2001)094[0400:EOTODA]2.0.CO;2
  15. Carey, J. R., 1982: Demography of the twospotted spider mite, Tetranychus urticae Koch. Oecologia 52(3), 389-395. https://doi.org/10.1007/BF00367964
  16. Chakraborty, S., A. V. Tiedemann, P. S. Teng, 2000: Climate change: potential impact on plant diseases. Environmental Pollution 108, 317-326. https://doi.org/10.1016/S0269-7491(99)00210-9
  17. Cheng, J. A., and J. Holt, 1990: A systems analysis approach to brown planthopper control on rice in Zhejiang Province, China. I. Simulation of outbreaks. Journal of Applied Ecology 27(1), 85-99. https://doi.org/10.2307/2403569
  18. Chifflet, R., E. K. Klein, C. Lavigne, V. L. Feon, A. E. Ricroch, J. Lecomte, and B. E. Vaissiere, 2011: Spatial scale of insect-mediated pollen dispersal in oilseed rape in an open agricultural landscape. Journal of Applied Ecology 48, 689-696. https://doi.org/10.1111/j.1365-2664.2010.01904.x
  19. Choi, S. W., 2008: Effects of weather factors on the abundance and diversity of moths in a temperate deciduous mixed forest of Korea. Zoological Science 25(1), 53-58. https://doi.org/10.2108/zsj.25.53
  20. Cresswell, J. E., A. P. Bassom, S. A. Bell, S. J. Collins, and T. B. Kelly, 1995: Predicted pollen dispersal by honey-bees and three species of bumble-bees foraging on oil-seed rape: A comparison of three models. Functional Ecology 9(6), 829-841 https://doi.org/10.2307/2389980
  21. Crozier, L., and G. Dwyer, 2006: Combining populationdynamic and ecophysiological models to predict climateinduced insect range shifts. The American Naturalist 167(6), 853-866. https://doi.org/10.1086/504848
  22. Da Silva, E. D. B., T. M. A. Kuhn, and L. B. Monteiro, 2011: Oviposition behavior of Grapholita molesta Busck (Lepidoptera: Tortricidae) at different temperatures. Neotropical Entomology 40(4), 415-420.
  23. Dentener, P. R., D. C. Whiting, and P. G. Connolly, 2002: Thrips palmi Karny (Thysanoptera: Thripidae): Could it survive in New Zealand? New Zealand Plant Protection 55, 18-24.
  24. Drost, Y. C., J. C. van Lenteren, and H. J. W. van Roermund, 1998: Life-history parameters of different biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae) in relation to temperature and host plant: a selective review. Bulletine of Entomological Research 88, 219-229. https://doi.org/10.1017/S0007485300025840
  25. Forister, M. L., and A.M. Shapiro, 2003: Climatic trends and advancing spring flight of butterflies in lowland California. Global Change Biology 9(7), 1130-1135. https://doi.org/10.1046/j.1365-2486.2003.00643.x
  26. Giarola, L. T. P., S. G. F. Martins, and M. C. P. Toledo Costa, 2006: Computer simulation of Aphis gossypii insect using Penna aging model. Physica A 368, 147-154. https://doi.org/10.1016/j.physa.2005.11.057
  27. Golizadeh, A., K. Kamali, Y. Fathipour, and H. Abbasipour, 2009: Effect of temperature on life table parameters of Plutella xylostella (Lepidoptera: Plutellidae) on two brassicaceous host plants. Journal of Asia-Pacific Entomology 12, 207-212. https://doi.org/10.1016/j.aspen.2009.05.002
  28. Gordo, O., and J. J. Sanz, 2005: Temporal trends in phenology of the honey bee Apis mellifera (L.) and the small white Pieris rapae (L.) in the Iberian Peninsula (1952-2004). Ecological Entomology 31, 261-268.
  29. Gotoh, T., K. Yamaguchi, and K. Mori, 2004: Effect of temperature on life history of the predatory mite Amblyseius (Neoseiulus) californicus (Acari: Phytoseiidae). Experimental and Applied Acarology 32, 15-30. https://doi.org/10.1023/B:APPA.0000018192.91930.49
  30. Han, M. W., J. H. Lee, M. H. Lee, 1993: Effect of temperature on development of oriental tobacco budworm, Helicoverpa assulta Guenee. Korean Journal of Applied Entomology 32(2), 236-244. (in Korean with English abstract)
  31. Han, E. J., B. R. Choi, and J. H. Lee, 2013: Temperature-dependent development models of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Journal of Asia-Pacific Entomology 16, 5-10. https://doi.org/10.1016/j.aspen.2012.08.006
  32. Hicke, J. A., J. A. Logan, J. Powell, and D. S. Ojima, 2006: Changing temperatures influence suitability for modeled mountain pine beetle (Dendroctonus ponderosae) outbreaks in the western United States. Journal of Geophysical Research 111, G02019.
  33. Hickling, R., D. B. Roy, J. K. Hill, R. Fox, and C. D. Thomas, 2006: The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biology 12, 450-455. https://doi.org/10.1111/j.1365-2486.2006.01116.x
  34. Hoffmann, A. A., and C. M. Sgro, 2011: Climate change and evolutionary adaptation. Nature 470, 479-485. https://doi.org/10.1038/nature09670
  35. IPCC, 2007: Climate change 2007. Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change.
  36. IPCC, 2014: Summary for policymakers. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Field, C. B., V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, and L. L. White (Eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1-32.
  37. Jeon, H. Y., D. S. Kim, M. R. Cho, Y. D. Chang, and M. S. Yiem, 2003: Temperature-dependent development of Pseudococcus comstocki (Homoptera: Pseudococcidae) and its stage transition models. Korean Journal of Applied Entomology 42(1), 43-51. (in Korean with English abstract)
  38. Jeong, S. A., and C. Jung, 2011: Effect of temperature and relative humidity on the emergence of overwintered Osmia cornifrons (Hymenoptera: Megachilidae). Korean Journal of Apiculture 26(4), 261-266. (in Korean with English abstract)
  39. Kadoya, T. and I. Washitani, 2010: Predicting the rate of range expansion of an invasive alien bumblebee (Bombus terrestris) using a stochastic spatio-temporal model. Biological Conservation 143, 1228-1235. https://doi.org/10.1016/j.biocon.2010.02.030
  40. Kasap, , 2009: The biology and fecundity of the citrus red mite Panonychus citri (McGregor) (Acari: Tetranychidae) at different temperatures under laboratory conditions. Turkish Journal of Agriculture and Forestry 33, 593-600.
  41. Kearney, M., W. P. Porter, C. Williams, S. Ritchie, and A. A. Hoffmann, 2009: Integrating biophysical models and evolutionary theory to predict climatic impacts on species' ranges: the dengue mosquito Aedes aegypti in Australia. Functional Ecology 23, 528-538. https://doi.org/10.1111/j.1365-2435.2008.01538.x
  42. Ki, G. J., and S. W. Choi, 2004: Butterfly population dynamics at Mt. Yudal. Mokpo, Korea. Korean Journal of Environmental Biology 22(1), 35-42. (in Korean with English abstract)
  43. Kieckhefer, R. W., N. C. Elliott, and D. D. Walgenbach, 1989: Effects of constant and fluctuating temperatures on developmental rates and demographic statistics of the English Grain Aphid (Homoptera: Aphididae). Annals of the Entomological Society of America 82(6), 701-706. https://doi.org/10.1093/aesa/82.6.701
  44. Kim, D. S., and J. H. Lee, 2003: Oviposition model of Carposina sasakii (Lepidoptera: Carposinidae). Ecological modelling 162, 145-153. https://doi.org/10.1016/S0304-3800(02)00402-7
  45. Kim, D. S., and J. H. Lee, 2010: A population model for the peach fruit moth, Carposina sasakii Matsumura (Lepidoptera: Carposinidae), in a Korean orchard system. Ecological Modelling 221, 268-280. https://doi.org/10.1016/j.ecolmodel.2009.10.006
  46. Kim, D. I., D. S. Choi, S. J. Ko, B. R. Kang, C. G. Park, S. G. Kim, J. D. Park, and S. S. Kim, 2012a: Comparison of dependent times of Myzus persicae (Hemiptera: Aphididae) between the constant and variable temperatures and its temperature-dependent development models. Korean Journal of Applied Entomology 51(4), 431-438. (in Korean with English abstract) https://doi.org/10.5656/KSAE.2012.10.0.032
  47. Kim, D. I., S. J. Ko, D. S. Choi, B. R. Kang, C. G. Park, S. G. Kim, J. D. Park, and S. S. Kim, 2012b: Comparison of temperature-dependent development model of Aphis gossypii (Hemiptera: Aphididae) under constant temperature and fluctuating temperature. Korean Journal of Applied Entomology 51(4), 421-429. (in Korean with English abstract) https://doi.org/10.5656/KSAE.2012.10.0.031
  48. Kim, J. S., T. H. Kim, and S. G. Lee, 2005: Bionomics of the green peach aphid (Myzus persicae Sulzer) adults on Chinese cabbage (Brassica campestris). Korean Journal of Applied Entomology 44(3), 213-217. (in Korean with English abstract)
  49. Kim, D. S., J. H. Lee, and M. S. Yiem, 2001: Temperature-dependent development of Carposina sasakii (Lepidoptera: Carposinidae) and its stage emergence models. Environmental Entomology 30(2), 298-305. https://doi.org/10.1603/0046-225X-30.2.298
  50. Kiritani, K., 2006: Predicting impacts of global warming on population dynamics and distribution of arthropods in Japan. Population Ecology 48, 5-12. https://doi.org/10.1007/s10144-005-0225-0
  51. Kiritani, K., 2013: Different effects of climate change on the population dynamics of insects. Applied Entomology and Zoology 48(2), 97-104. https://doi.org/10.1007/s13355-012-0158-y
  52. Korol, A., E. Rashkovetsky, K. Iliadi, P. Michalak, Y. Ronin, and E. Nevo, 2000: Nonrandom mating in Drosophila melanogaster laboratory populations derived from closely adjacent ecologically contrasting slopes at "Evolution Canyon". PNAS 97, 12637-12642. https://doi.org/10.1073/pnas.220041397
  53. Kroschel, J. M., H. E. Z. Sporleder, H. Tonnang, P. Juarez, J. C. Carhuapoma, and R. S. Gonzales, 2013: Predicting climate-change-caused changes in global temperature on potato tuber moth Phthorimaea operculella (Zeller) distribution and abundance using phenology modeling and GIS mapping. Agricultural and Forest Meteorology 170, 228-241. https://doi.org/10.1016/j.agrformet.2012.06.017
  54. Kwon, T. S., 2014: Change of ant fauna in the Gwangneung forest: Test on influence of climatic warming. Journal of Asia-Pacific Biodiversity 7, 219-224. https://doi.org/10.1016/j.japb.2014.04.004
  55. Kwon, T. S., B. K. Byun, S. H. Kang, S. S. Kim, B. W. Lee, and Y. K. Kim, 2008: Analysis on changes, and problems in phenology of butterflies in Gwangneung Forest. Korean Journal of Applied Entomology 47(3), 209-216. (in Korean with English abstract) https://doi.org/10.5656/KSAE.2008.47.3.209
  56. Kwon, T. S., S. S. Kim, J. H. Chun, B. K. Byun, J. H. Lim, and J. H. Shin, 2010: Changes in butterfly abundance in response to global warming and reforestation. Environmental Entomology 39(2), 337-345. https://doi.org/10.1603/EN09184
  57. Kwon, T. S., C. M. Lee, and S. S. Kim, 2014: Northward range shifts in Korean butterflies. Climate Change 126, 163-174. https://doi.org/10.1007/s10584-014-1212-2
  58. Lee, G. H., C. H. Paik, C. Y. Hwang, M. Y. Choi, D. H. Kim, S. Y. Na, S. S. Kim, and I. H. Choi, 2003: Effect of host plants on the development and reproduction of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Korean Journal of Applied Entomology 42(4), 301-305. (in Korean with English abstract)
  59. Lee, H. S., and D. R. Gillespie, 2011: Life tables and development of Amblyseius swirskii (Acari: Phytoseiidae) at different temperatures. Experimental and Applied Acarology 53, 17-27. https://doi.org/10.1007/s10493-010-9385-5
  60. Lee, J. H., and J. J. Ahn, 2000: Temperature effects on development, fecundity, and life table parameters of Amblyseius swirskii (Acari: Phytoseiidae). Environmental Entomology 29(2), 265-271. https://doi.org/10.1093/ee/29.2.265
  61. Lee, J. S., I. K. Kim, S. H. Koh, S. J. Cho, S. J. Jang, S. H. Pyo, and W. I. Choi, 2011: Impact of minimum winter temperature on Lycorma delicatula (Hemiptera: Fulgoridae) egg mortality. Journal of Asia-Pacific Entomology 14, 123-125. https://doi.org/10.1016/j.aspen.2010.09.004
  62. Lee, S. K., J. Kim, S. S. Cheong, Y. K. Kim, S. G. Lee, and C. Y. Hwang, 2013: Temperature-dependent development model of Hawaiian beet webworm, Spoladea recurvalis Fabricius (Lepidoptera: Pyraustinae). Korean Journal of Applied Entomology 52(1), 5-12. (in Korean with English abstract) https://doi.org/10.5656/KSAE.2012.11.0.030
  63. Liu, S. S., F. Z. Chen, and M. P. Zalucki, 2002: Development and Survival of the Diamondback Moth (Lepidoptera: Plutellidae) at Constant and Alternating Temperatures. Environmental Entomology 31(2), 221-231. https://doi.org/10.1603/0046-225X-31.2.221
  64. Liu, S. S., and X. D. Meng, 2000: Modelling development time of Lipaphis erysimi (Hemiptera: Aphididae) at constant and variable temperatures. Bulletin of Entomological Research 90, 337-347.
  65. Masters, G. J., V. K. Brown, I. P. Clarke, and J. B. Whittaker, 1998: Direct and indirect effects of climate change on insect herbivores: Auchenorrhyncha (Homoptera). Ecological Entomology 23, 45-52. https://doi.org/10.1046/j.1365-2311.1998.00109.x
  66. Maywald, G. F., R. W. Sutherst, and M. P. Zalucki, 1997: Generic modelling for integrated pest management. In 'Proceedings of MODSIM 97, international congress on modelling and simulation'. McDonald, A. D., and M. McAleer (Eds.), MODSIM '97: Hobart, Australia, 1115-1116.
  67. McCornack, B. P., D. W. Ragsdale, and R. C. Venette, 2004: Demography of soybean aphid (Homoptera: Aphididae) at summer temperatures. Journal of Economic Entomology 97(3), 854-861. https://doi.org/10.1093/jee/97.3.854
  68. McDonald, J. R., J. S. Bale, and K. F. A. Walters, 1998: Effect of temperature on development of the western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). European Journal of Entomology 95, 301-306.
  69. McDonald, J. R., J. S. Bale, and K. F. A. Walters, 1999: Temperature, development and establishment potential of Thrips palmi (Thysanoptera: Thripidae) in the United Kingdom. European Journal of Entomology 96, 169-173.
  70. Newman, J. A., 2005: Climate change and the fate of cereal aphids in Southern Britain. Global Change Biology 11, 940-944. https://doi.org/10.1111/j.1365-2486.2005.00946.x
  71. Nielsen, A. L., G. C. Hamilton, and D. Matadha, 2008: Developmental rate estimation and life table analysis for Halyomorpha halys (Hemiptera: Pentatomidae). Environmental Entomology 37(2), 348-355. https://doi.org/10.1093/ee/37.2.348
  72. National Institute of Meteorological Research, 2013: Development and application of methodology for climate change prediction (V). Korea Meteorological Administration, 447pp.
  73. Osborne, L. S., 1982: Temperature-dependent development of greenhouse whitefly and its parasite Encarsia formosa. Environmental Entomology 11, 483-485. https://doi.org/10.1093/ee/11.2.483
  74. Otto, M., and M. Hommes, 2000: Development of a simulation model for the population dynamics of the onion fly Delia antiqua in Germany. Bulletin OEPP/EPPO 30, 115-119. https://doi.org/10.1111/j.1365-2338.2000.tb00862.x
  75. Otuka, A., M. Matsumura, S. Sanada-Morimura, H. Takeuchi, T. Watanabe, R. Ohtsu, and H. Inoue, 2010: The 2008 overseas mass migration of the small brown planthopper, Laodelphax striatellus and subsequent outbreak of rice stripe disease in western Japan. Applied Entomology and Zoology 45(2), 259-266. https://doi.org/10.1303/aez.2010.259
  76. Paik, C. H., C. Y. Hwang, G. H. Lee, D. H. Kim, M. Y. Choi, S. Y. Na, and S. S. Kim, 2003: Development, reproduction and longevity of predator Orius sauteri Poppius (Hemiptera: Anthocoridae) when reared on three different preys. Korean Journal of Applied Entomology 42(1), 35-41. (in Korean with English abstract)
  77. Paik, C. H., G. H. Lee, C. Y. Hwang, S. J. Kim, 2010: Predatory response of the pirate bug, Orius sauteri Poppius (Heteroptera: Anthocoridae) on Frankliniella occidentalis, Aphid gossypii and Tetranychus urticae. Korean Journal of Applied Entomology 49(4), 401-407. (in Korean with English abstract) https://doi.org/10.5656/KSAE.2010.49.4.401
  78. Park, C. G., H. H. Park, and K. H. Kim, 2011: Temperature-dependent development model and forecasting of adult emergence of overwintered small brown planthopper, Laodelphax striatellus Fallen, population. Korean Journal of Applied Entomology 50(4), 343-352. (in Korean with English abstract) https://doi.org/10.5656/KSAE.2011.10.0.62
  79. Park, C. G., H. H. Park, K. H. Kim, and S. G. Lee, 2013: Temperature-dependent development model of white backed planthopper (WBPH), Sogatella furcifera (Horvath) (Homoptera: Delphacidae). Korean Journal of Applied Entomology 52(2), 133-140. (in Korean with English abstract) https://doi.org/10.5656/KSAE.2013.02.1.070
  80. Park, C. G., H. H. Park, K. B. Uhm, and J. H. Lee, 2010: Temperature-dependent development model of Paromius exiguus (Distant) (Heteroptera: Lygaeidae). Korean Journal of Applied Entomology 49(4), 305-312. (in Korean with English abstract) https://doi.org/10.5656/KSAE.2010.49.4.305
  81. Park, C. G., H. Y. Kim, and J. H. Lee, 2010: Parameter estimation for a temperature-dependent development model of Thrips palmi Karny (Thysanoptera: Thripidae). Journal of Asia-Pacific Entomology 13, 145-149. https://doi.org/10.1016/j.aspen.2010.01.005
  82. Park, E. C., K. H. Choi, J. W. Kim, S. Cho, and G. H. Kim, 2001: Effect of temperature on development and reproduction of the persimmon fruit moth, Stathmopoda masinissa (Lepidoptera: Stathmopodidae). Korean Journal of Applied Entomology 40(4), 297-300. (in Korean with English abstract)
  83. Park, H. H., L. Shipp, R. Buitenhuis, and J. J. Ahn, 2011: Life history parameters of a commercially available Amblyseius swirskii (Acari: Phytoseiidae) fed on cattail (Typha latifolia) pollen and tomato russet mite (Aculops lycopersici). Journal of Asia-Pacific Entomology 14, 497-501. https://doi.org/10.1016/j.aspen.2011.07.010
  84. Park, J. J., H. Mo, D. H. Lee, K. I. Shin, and K. Cho, 2012: Modeling and validation of population dynamics of the American Serpentine Leafminer (Liriomyza trifolii) using leaf surface temperatures of greenhouses cherry tomatoes. Korean Journal of Applied Entomology 51(3), 235-243. (in Korean with English abstract) https://doi.org/10.5656/KSAE.2012.06.0.013
  85. Park, K. T., T. M. Kang, M. Y. Kim, M. Y. Chae, E. M. Ji, and Y. S. Bae, 2006: Discovery of the ten species of subtropical-moths in Is. Daecheong, Korea. Korean Journal of Applied Entomology 45(3), 261-268. (in Korean with English abstract)
  86. Parkash, R., S. Ramniwas, and B. Kajla, 2013: Climate warming mediates range shift of two differentially adapted stenothermal Drosophila species in the Western Himalayas. Journal of Asia-Pacific Entomology 16(2), 147-153. https://doi.org/10.1016/j.aspen.2012.12.004
  87. Poutsma, J., A. J. M. Loomans, B. Aukema, and T. Heijerman, 2008: Predicting the potential geographical distribution of the harlequin ladybird, Harmonia axyridis, using the CLIMEX model. BioControl 53, 103-125. https://doi.org/10.1007/s10526-007-9140-y
  88. Pozsgai, G., and N. A. Littlewood, 2014: Ground beetle (Coleoptera: Carabidae) population declines and phenological changes: Is there a connection? Ecological Indicators 41, 15-24. https://doi.org/10.1016/j.ecolind.2014.01.029
  89. Qui, Y. T., J. C. van Lenteren, Y. C. Drost, and C. J. A. M. Posthuma-Doodeman, 2004: Life-history parameters of Encarsia Formosa, Eretmocerus eremicus and E. mundus, aphelinid parasitoids of Bemisia argentifolii (Hemiptera: Aleyrodidae). European Journal of Entomology 101, 83-94. https://doi.org/10.14411/eje.2004.017
  90. Raga, I. N., K. Ito, M. Matsui, and M. Okada, 1988: Effects of temperature on adult longevity, fertility, and rate of transovarial passage of rice stripe virus in the small brown planthopper, Laodelphax striatellus Fallen (Homoptera: Delphacidae). Applied Entomology and Zoology 23(1), 67-75. https://doi.org/10.1303/aez.23.67
  91. Regniere, J., and R. St-Amant, 2008: BioSIM 9 user's manual. Information Report LAU-X-134. Quebec, Canada, Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre.
  92. Roy, D. B., and T. H. Sparks, 2000: Phenology of British butterflies and climate change. Global Change Biology 6, 407-416. https://doi.org/10.1046/j.1365-2486.2000.00322.x
  93. Samways, M. J., R. Osborn, H. Hastings, and V. Hattingh, 1999: Global climate change and accuracy of prediction of species' geographical ranges: establishment success of introduced ladybirds (Coccinellidae, Chilocorus spp.) worldwide. Journal of Biogeography 26, 795-812. https://doi.org/10.1111/j.1365-2699.1999.00318.x
  94. Seal, D. R., W. Klassen, and V. Kumar, 2010: Biological parameters of Scirtothrips dorsalis (Thysanoptera: Thripidae) on selected hosts. Environmental Entomology 39(5), 1389-1398. https://doi.org/10.1603/EN09236
  95. Shipp, J. L., and Y. M. van Houten, 1997: Influence of temperature and vapor pressure deficit on survival of the predatory mite, Amblyseius cucumeris (Acari: Phytoseiidae). Environmental Entomology 26(1), 106-113. https://doi.org/10.1093/ee/26.1.106
  96. Shipp, J. L., K. I. Ward, and T. J. Gillespie, 1996: Influence of temperature and vapor pressure deficit on the rate of predation by the predatory mite, Amblyseius cucumeris, on Frankliniella occidentalis. Entomologia Experimentalis et Applicata 78, 31-38. https://doi.org/10.1111/j.1570-7458.1996.tb00762.x
  97. Shipp, J. L., and G. H. Whitefield, 1991: Functional response of the predatory mite, Amblyseius cucumeris (Acari: Phytoseiidae), on western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). Environmental Entomology 20(2), 694-699. https://doi.org/10.1093/ee/20.2.694
  98. Skirvin, D. J., and J. S. Fenlon, 2003: The effect of temperature on the functional response of Phytoseiulus persimilis (Acari: Phytoseiidae). Experimental and Applied Acarology 31, 37-49. https://doi.org/10.1023/B:APPA.0000005107.97373.87
  99. Skirvin, D. J., J. N. Perry, and R. Harrington, 1997: The effect of climate change on an aphid-coccinellid interaction. Global Change Biology 3(1), 1-11.
  100. Sporleder, M., J. Kroschel, M. R. Gutierrez Quispe, and A. Lagnaoui, 2004: A temperature-based simulation model for the potato tuberworm, Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae). Environmental Entomology 33(3), 477-486. https://doi.org/10.1603/0046-225X-33.3.477
  101. Sporleder, M., R. Simon, J. Gonzales, P. Carhuapoma, H. Juarez, F. De Mendiburu, and J. Kroschel, 2009: ILCYM-Insect Life Cycle Modeling. In: A Software Package for Developing Temperature-based Insect Phenology Models with Applications for Regional and Global Pest Risk Assessments and Mapping (User Manual). International Potato Center, Lima, Peru.
  102. Stefanescu, C., J. Penuelas, and I. Filella, 2003: Effects of climatic change on the phenology of butterflies in the northwest Mediterranean Basin. Global Change Biology 9, 1494-1506. https://doi.org/10.1046/j.1365-2486.2003.00682.x
  103. Stephens, A. E. A., and P. R. Dentener, 2005: Thrips palmi -potential survival and population growth in New Zealand. New Zealand Plant Protection 58, 24-30.
  104. Sutherst, R. W., and G. F. Maywald, 1985: A computerised system for matching climates in ecology. Agriculture Ecosystems and Environment 13, 281-299. https://doi.org/10.1016/0167-8809(85)90016-7
  105. Sutherst, R. W., G. F. Maywald, D. B. Skarratt, 1995: Predicting insect distributions in a changed climate. In 'Insects in a changing environment'. Harrington, R., and N. E. Stork (Eds.), Academic Press: London, 59-91.
  106. Tatara, A., 1994: Effect of temperature and host plant on the development, fertility and longevity of Scirotothrips dorsalis Hood (Thysanoptera: Thripidae). Applied Entomology and Zoology 29(1), 31-37. https://doi.org/10.1303/aez.29.31
  107. Tikkanen, O. P., and R. Julkunen-Tiitto, 2003: Phenological variation as protection against defoliating insects: the case of Quercus robur and Operophtera brumata. Oecologia 136, 244-251. https://doi.org/10.1007/s00442-003-1267-7
  108. Turner, R., Y. H. Song, and K. B. Uhm, 1999: Numerical model simulations of brown planthopper Nilaparvata lugens and white-backed planthopper Sogatella furcifera (Hemiptera: Delphacidae) migration. Bulletin of Entomological Research 89, 557-568.
  109. Wang, L., P. Shi, C. Chen, and F. Xue, 2013: Effect of temperature on the dependent of Laodelphax striatellus (Homoptera: Delphacidae). Journal of Economic Entomology 106(1), 107-114. https://doi.org/10.1603/EC12364
  110. White, J., Y. S. Son, and Y. L. Park, 2009: Temperature-dependent emergence of Osmia cornifrons (Hymenoptera: Megachilidae) adults. Journal of Economic Entomology 102(6), 2026-2032. https://doi.org/10.1603/029.102.0602
  111. Worner, S. P., and M. Gevrey, 2006: Modelling global insect pest species assemblages to determine risk of invasion. Journal of Applied Ecology 43, 858-867. https://doi.org/10.1111/j.1365-2664.2006.01202.x
  112. Xia, J. Y., W. van der Werf, and R. Rabbinge, 1999: Influence of temperature on bionomics of cotton aphid, Aphis gossypii, on cotton. Entomologia Experimentalis et Applicata 90, 25-35. https://doi.org/10.1046/j.1570-7458.1999.00420.x
  113. Yamamura, K., M. Yokozawa, M. Nishimori, Y. Ueda, and T. Yokosuka, 2006: How to analyze long-term insect population dynamics under climate change: 50-year data of three insect pests in paddy fields. Population Ecology 48, 31-48. https://doi.org/10.1007/s10144-005-0239-7
  114. Yukawa, J., K. Kiritani, N. Gyoutoku, N. Uechi, D. Yamaguchi, and S. Kamitani, 2007: Distribution range shift of two allied species, Nezara viridula and N. antennata (Hemiptera: Pentatomidae), in Japan, possibly due to global warming. Applied Entomology and Zoology 42(2), 205-215. https://doi.org/10.1303/aez.2007.205
  115. Yukawa, J., K. Kiritani, T. Kawasawa, Y. Higashiura, N. Sawamura, K. Nakada, N. Gyotoku, A. Tanaka, S. Kamitani, K. Matsuo, S. Yamauchi, and Y. Takematsu, 2009: Northward range expansion by Nezara viridula (Hemiptera: Pentatomidae) in Shikoku and Chugoku Districts, Japan, possibly due to global warming. Applied Entomology and Zoology 44(3), 429-437. https://doi.org/10.1303/aez.2009.429
  116. Zamani, A. A., A. Talebi, Y. Fathipour, and V. Baniameri, 2006: Temperature-dependent functional response of two aphid parasitoids, Aphidius colemani and Aphidius matricariae (Hymenoptera: Aphididae), on the cotton aphid. Journal of Pest Science 79, 183-188. https://doi.org/10.1007/s10340-006-0132-y
  117. Zamani, A. A., A. Talebi, Y. Fathipour, and V. Baniameri, 2007: Effect of temperature on life history of Aphidius colemani and Aphidius matricariae (Hymenoptera: Braconidae), two parasitoids of Aphis gossypii and Myzus persicae (Homoptera: Aphididae). Environmental Entomology 36(2), 263-271. https://doi.org/10.1603/0046-225X-36.2.263
  118. Zhongren, L., Y. Junming, Z. Canjian, W. Haihong, 2007: Prediction of suitable areas for Liriomyza trifolii (Burgess) in China. Plant Protection-Beijing 33(5), 100.