• Title/Summary/Keyword: PFC simulation

Search Result 215, Processing Time 0.024 seconds

A study on the characteristics of power factor correction circuits with input active boost converter (입력 능동 부스트 컨버터를 고려한 역률개선회로의 특성분석)

  • Jang, Jun-Young;Lee, Kwan-Yong;Kim, Cherl-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.270-272
    • /
    • 2003
  • Switching power supplies are widely used in many industrial fields. Power factor correction(PFC) circuits have tendency to be applied in new power supply designs. The input active power factor correction(APFC) circuits can be implemented using either the two-stage approach or the single-stage approach. The single-stage PFC circuit has advantage to reduce the number of components by eliminating a need for the PFC switch and control circuit. However, unlike in the two-stage approach, the do voltage on the energy storage capacitor in a single-stage PFC circuit is not well regulated. As a result. in universal line application($90{\sim}265Vac$), the storage capacitor voltage varies with the load and line variation. In this paper, the performance of output voltage regulation and transient response are clarified here. The validity of designed boost PFC circuit is confirmed by MATLAB simulation and experimental results of 2 [kW] prototype converter.

  • PDF

A Study on PFC-Inverter Soft-Switching (소프트-스위칭 PFC-인버터에 대한 연구)

  • Lee, S.R.;Kwon, S.S.;Joo, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1212-1214
    • /
    • 2000
  • A new soft-switching PFC-Inverter for Induction Motor's operation with single phase or three phase medium size is proposed. In order to improve the power factor and the efficiency, in this paper, the ZVT topology in the conventional PFC-Inverter is adopted. So, the operation mode of the proposed ZVT PFC-inverter is analyzed and the optimum circuit is designed. At last, the PSPICE simulation and experiment results are presented in order to verify the validity of the proposed circuit.

  • PDF

A Study on the ZVT PFC for Using 3[KW] Power Amplifier (Power Amp.용 3KW급 ZVT PFC 개발)

  • Lee, S.R.;Jeong, C.G.;Kim, S.W.;Ko, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1306-1308
    • /
    • 2000
  • A new ZVT PFC for using 3[KW] power amplifier is proposed. Generally, the single phase diode rectifier has been widely used in the SMPS of the conventional power amplifier. But this rectifier has occurred some problems which are the input power factor and current harmonics. To solve the above problems, in this paper, two topology is adopted. The one is the boost type PFC for improving the input power factor. The other is the ZVT resonant circuit for reducing the switching loss and stress. In this paper, the proposed topology is analyze designed to built the ZVT PFC for using 3[KW] power amplifier. In order to verify the circuit va finally, the PSPICE simulation and experiment results are presented.

  • PDF

A Design of PFC Circuit for Reducing the Harmonic in Constant Voltage-fed Electronic Ballast Circuit (정전압형 전자식 안정기 회로의 고조파 저감을 위한 PFC회로의 설계)

  • 이현무;고강훈;고희석;이현우
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.343-348
    • /
    • 2003
  • In this paper, a PFC(Power Factor Correction) electronic ballast with constant voltage-fed is proposed. The proposed PFC electronic ballast is combined of a High-efficiency boost converter and a conventional half bridge inverter. It is proved that the ripple of input-current and the input-current's harmonic of the proposed PFC electronic ballast are reduced using the voltage divider and soft-switching technique. It is demonstrated that simulation results for 40[W] fluorescent lamp correspond with theoretical analysis

  • PDF

A Study on Soft Switching of Single-Stage PFC AC/DC Full Bridge Converter (Single-Stage PFC AC/DC Full Bridge Converter의 소프트 스위칭에 관한 연구)

  • 임경내;성병기;계문호;권순재;김철우
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.401-404
    • /
    • 1998
  • This paper proposes a new soft switching single stage AC/DC full bridge converter with unit power factor and isolated output. This circuit shows that it is possible to combine the boost converter which is for PFC(Power Factor Correction) and full bridge converter which is for DC/DC converter. A simple auxiliary circuit which includes neither lossy components nor active switches eliminates ringing of secondary side of the transformer. The characteristics of the proposed circuit are investigated and the validity is verified by the simulation results.

  • PDF

A Study on the Operational Characteristics of PFC at Instantaneous Power Interrupt (순시 정전 시 역률 개선 회로의 동작 특성에 관한 연구)

  • 이해돈;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.390-396
    • /
    • 2004
  • Recently, there have been Increasing demands for high power factor and low harmonic distortion in the current drawn from utility. The harmonic limits imposed by international standards. It need the PFC techniques in order to reduce line current harmonics and comply with the standards. The average current control method that is the most proper PFC control method in a switching power supply of middle and high power has been used mostly to PFC control method. However, the switching device of PFC circuit has frequently destructed at power return after instantaneous power interrupt. Therefore, this paper have verified the cause of this problems and proposed the solution through simulation and experiment

A Design of Electronic Ballast PFC Circuitry for 400[W] High Pressure Sodium Lamp Using the IsSPICE (IsSPICE를 이용한 400(W) 고압나트륨 램프용 전자식 안정기 역률 보상회로 설계)

  • 강응석;신대철;최종문
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.4
    • /
    • pp.8-14
    • /
    • 2004
  • In this paper, We designed the electronic ballast power factor corrected(PFC) circuity for an 400[W] hight pressure soldium lamp using boost-converter. The values of PFC elements in the proposed boost-converter circuit are calculated theoretically and performed simulation using IsSPICE. We also implemented the ballast for high pressure sodium lamp and experiments. We found that the experimental characteristics of implemented PFC circuit were same with those of simulation results. The experimental results show the performance as PF 90.3[%] at output 400(W).

Electronic Ballast Design Driven by Low Frequency Square Wave for High Power MHL (고출력 MHL용 구형저주파 구동 방식의 전자식 안정기 설계)

  • Kim, Ki-Nam;Park, Jong-Yun;Choi, Young-Min
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.394-400
    • /
    • 2010
  • In this paper, We proposed electronic ballast that applys Buck Converter operation principle to Full-Bridge inverter. The proposed ballast consists of an EMI Filter, a full-bridge rectifier, a passive power factor correction (PFC) circuit and a full-bridge inverter. The passive PFC is used and a Full-Bridge inverter operation by two frequency. High Side and Low Side switch was driven by high frequency and low frequency and realized buck Converter's operation. The lamp is driven by Low Frequency square wave to avoid Acoustic Resonance. Also, bulk of inductor is reduced by high frequency switching. Performance of the proposed ballast was validated through computer simulation using Pspice, experimentation and by applying it to an electronic ballast for a prototype 700W MHL.

Digital Current Control Scheme for Boost Single-Phase PFC Converter Based on Virtual d-q Transformation (가상 d-q 변환을 이용한 승압형 단상 PFC 컨버터의 디지털 전류 제어 방법)

  • Lee, Kwang-Woon;Kim, Hack-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.1
    • /
    • pp.54-60
    • /
    • 2020
  • A digital current control scheme using virtual d-q transformation for a boost single-phase power factor correction (PFC) converter is proposed. The use of virtual d-q transformation in single-phase power converters is known to improve current control performance. However, the conventional virtual d-q transformation-based digital current control scheme cannot be directly applied to the boost single-phase PFC converter because the current and average voltage waveforms of the inductor used in the converter are not sinusoidal. To cope with this problem, this study proposes a virtual sinusoidal signal generation method that converts the current and average voltage waveform of the inductor into a sinusoidal waveform synchronized with the grid. Simulation and experimental results are provided to show that the virtual d-q transformation-based digital current control is successfully applied to the boost single-phase PFC converter with the aid of the proposed virtual sinusoidal signal generation method.

Controls Methods Review of Single-Phase Boost PFC Converter : Average Current Mode Control, Predictive Current Mode Control, and Model Based Predictive Current Control

  • Hyeon-Joon Ko;Yeong-Jun Choi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.231-238
    • /
    • 2023
  • For boost PFC (Power Factor Correction) converters, various control methods are being studied to achieve unity power factor and low THD (Total Harmonic Distortion) of AC input current. Among them, average current mode control, which controls the average value of the inductor current to follow the current reference, is the most widely used. However, nowadays, as advanced digital control becomes possible with the development of digital processors, predictive control of boost PFC converters is receiving attention. Predictive control is classified into predictive current mode control, which generates duty in advance using a predictive algorithm, and model predictive current control, which performs switching operations by selecting a cost function based on a model. Therefore, this paper simply explains the average current mode control, predictive current mode control, and model predictive current control of the boost PFC converter. In addition, current control under entire load and disturbance conditions is compared and analyzed through simulation.