• Title/Summary/Keyword: PFC boost converter

Search Result 179, Processing Time 0.024 seconds

PFC Dual Boost Converter Based on Input Voltage Estimation for DC Inverter Air Conditioner

  • Park, Gwi-Geun;Kwon, Kee-Yong;Kim, Tae-Woong
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.293-299
    • /
    • 2010
  • In this paper, a single-phase PFC (Power Factor Correction) dual boost converter based on input voltage estimation is studied for DC inverter air conditioner. It is focused on improving input power factor and power quality to satisfy the recent harmonic current regulation standards. Furthermore the input voltage estimation is introduced for price competitive products. A low cost and reasonable control system is implemented using a specified high-speed 32-bit microprocessor. Their effectiveness are verified through theoretical analysis and experiments.

A New Single-Stage PFC AC/DC Converter with Low Link-Capacitor Voltage

  • Lee, Byoung-Hee;Kim, Chong-Eun;Park, Ki-Bum;Moon, Gun-Woo
    • Journal of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.328-335
    • /
    • 2007
  • A conventional Single-Stage Power-Factor-Correction (PFC) AC/DC converter has a link capacitor voltage problem under high line input and low load conditions. In this paper, this problem is analyzed by using the voltage conversion ratio of the DC/DC conversion cell. By applying this analysis, a new Single-Stage PFC AC/DC converter with a boost PFC cell integrated with a Voltage-Doubler Rectified Asymmetrical Half-Bridge (VDRAHB) is proposed. The proposed converter features good power factor correction, low current harmonic distortions, tight output regulations and low voltage of the link capacitor. An 85W prototype was implemented to show that it meets harmonic requirements and standards satisfactorily with near unity power factor and high efficiency over universal input.

A Development of Variable Output type Rectifier by PFC (역률 보정회로(PFC)를 이용한 출력 가변형 정류기 개발에 관한 연구)

  • Lee, Chun-Mo;Jang, Yong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07e
    • /
    • pp.70-74
    • /
    • 2003
  • The buck-boost converter is employed as the variable output PFC power stage. From the loss analysis, this topology has a high efficiency from light load to heavy load. A modified input current sensing scheme is presented to overcome the problem of the insufficient phase margin for the PFC circuit near the maximum output voltage. The variable output PFC circuit has a good performance in the wide output voltage range, under both the Boost mode when the output voltage is high and the Buck+Boost mode when the output voltage is low.

  • PDF

Analysis and Design of Interleaved Boost Power Factor Corrector on Two Stage AC/DC PFC Converter (2단 역률보상회로를 구성하는 Interleaved 승압형 컨버터의 해석 및 설계)

  • 허태원;손영대;김동완;김춘삼;박한석;우정인
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.7
    • /
    • pp.343-351
    • /
    • 2003
  • In this paper, interleaved boost converter is applied as a first-stage converter in switch mode power supply. The first-stage converter plays a role to improve power factor. Interleaved Boost Power Factor Corrector(IBPFC) can reduce input current ripple as a single voltage control loop only without inner current loop, because input current is divided each 50% by two switching devices. Each converter cell is also operated in discontinuous current mode and inductor current of each converter is discontinuous. Total input current which is composed by each converter cell is continuous current. Thus, IBPFC is able to improve input current ripple. IBPFC operating in discontinuous current mode can be classified as six modes from switching state and be carried out state space averaging small signal modeling. A control transfer function is obtained according to the modeling. Not only steady-state characteristics but also dynamic characteristics is considered. Single voltage control loop is also constructed by the control transfer function. From experimental result, improvement of power factor and input current ripple are verified.

Comparative analysis of power factor correction circuit using Feedforward (Feedforward제어 방식을 이용한 역률개선회로의 비교분석)

  • Kim, Cherl-Jin;Jang, Jun-Young;Yoo, Byeong-Kyu;Lee, Dal-Eun;Baek, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.187-189
    • /
    • 2003
  • Conventional Switched Mode Power Supplies(SMPS) with diode-capacitor rectifier have distorted input current waveform with high harmonic content. Typically, these SMPS have a power factor lower than 0,65. To improve with this problem the power factor correction(PFC) circuit of power supplies has to be introduced. Specially. to the reduce size and manufacture cost of power conversion device, the single-stage PFC converter is increased to demand as necessary of study. in this paper, The comparative analysis of power factor correction circuit using Feedforward control with average current mode flyback converter(single-stage) and boost converter(two-stage). Also, the validity of designed and manufactured high power factor flyback converter and boost converter is confirmed by simulation and experimental results.

  • PDF

A Study on the PFC(Power Factor Correction) boost converter applied Flying Capacitor Snubber. (Flying Capacitor Snubber를 적용한 PFC(Power Factor Correction) Boost 컨버터에 관한 연구)

  • Kim B.C.;Lee H.S.;Seo J.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.77-80
    • /
    • 2003
  • Switching Mode Power Supply(SMPS) is widely used in many industrial fields. Power factor improvement and harmonic reduction technique are very important in SMPS. In this paper, we propose the circuit applied Flying Capacitor Snubber for improving power factor of boost converter on fast switching state. Snubber circuit consists of a inductor, two diodes and a capacitor. The losses of switching are reduced by inserting a snubber inductor in the series path of the boost switch and the rectifier diode to control the di/dt rate of the rectifier during it's turn-off. Prior to actual experiment, the circuit analysis Is implemented by PSPICE simulation.

  • PDF

A New Soft Switching Step-Down/Up Converter with Inherent PFC Performance

  • Jabbari, Masoud;Farzanehfard, Hosein
    • Journal of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.835-844
    • /
    • 2009
  • In this paper a new buck-boost type DC-DC converter is presented. Its voltage gain is positive, all active elements operate under soft-switching condition independent of loading, magnetic isolation and self output short-circuit protection exist, and very fast dynamic operation is achievable by a simple bang-bang controller. This converter also exhibits appropriate PFC characteristics since its input current is inherently proportional to the source voltage. When the voltage source is off-line, it is sufficient to add an inductor after the rectifier, then near unity power factor is achievable. All essential guidelines to design the converter as a DC-DC and a PFC regulator are presented. Simulation and experimental results verify the developed theoretical analysis.

A Study on the stability of boost power factor correction circuit with voltage feedback loop (전압제어루프를 고려한 부스트방식 역률개선회로의 안정도에 관한 연구)

  • Kim, Cherl-Jin;Jang, Jun-Young;Ji, Jae-Geun;Song, Yo-Chang
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.271-273
    • /
    • 2002
  • Switching power supply are widely used in many industrial field. Power factor correction(PFC) has become an increasingly necessary feature in new power supply designs. The power factor correction circuit using boost converter used in input of power source is studied in this paper. In a boost power factor correction circuit there are two feedback control loops, which are a current feedback loop and a voltage feedback loop. In this paper, it is analyzed regulation performance of output voltage and compensator to improve of transient response that presented at continuous conduction mode(CCM) of boost PFC circuit. The validity of designed boost PFC circuit is confirmed by simulation and experimental results.

  • PDF

Soft Switching Single Stage AC-DC Full Bridge Boost Converter Using Non-Dissipative Snubber (무손실 스너버 적용 소프트 스위칭 Single Stage AC-DC Full Bridge Boost 컨버터)

  • 김은수;조기연;김윤호;조용현;박경수;안호균;박순구
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.377-383
    • /
    • 1999
  • A new soft switching single stage AC-DC full bridge boost converter with unit input power factor and isolated output i is presented in this paper. Due to the use of a non-dissipative snubber on the primary side, a single stage high-power f factor isolated full bridge boost converter has a significant reduction of switching losses in the main switching devices. The non-dissipative snubber adopted in this study consists of a snubber capacitor Cr, a snubber inductor Cr, a fast r recovery snubber diode Dr' and a commutation diode Dp. This paper presents the complete operating principles, t theoretical analysis and experimental results.

  • PDF

A Study on the Internal Loss and Efficiency Analysis by Loss Factors in PFC Switching Rectifier (PFC 스위칭 정류기에서 손실인자에 의한 내부손실과 효율분석에 관한 연구)

  • Tae Young Ahn
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.50-54
    • /
    • 2024
  • In this paper, we propose a theoretical method to systematically analyze the power conversion efficiency of a single-phase PFC switching rectifier. Boost-type PFC was organized in order of highest correlation with load current using steady-state analysis results and introduced the concept of loss factor. The loss factors for each major element are summarized and presented in a table. This paper makes it easier to understand the internal loss and power conversion efficiency of the rectifier for loss factors. Lastly, to confirm the validity of the efficiency analysis results reflecting the loss factors, loss and efficiency analysis of the 2.5kW PFC rectifier was performed. The results were compared with data from a 2.5kW PFC circuit for evaluation. As a result, the usefulness of power conversion efficiency analysis reflecting the loss factors proposed in this paper was confirmed.

  • PDF