• Title/Summary/Keyword: PFC boost converter

Search Result 178, Processing Time 0.026 seconds

A Low COST SOFT-SWITCHED AC-TO-TC CONVERTER

  • 최주엽;목형수;김택용
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.135-140
    • /
    • 1997
  • A highly efficient single-phase/three-phase compatible ac-to-dc converter is proposed and analyzed, which includes three identical single-phase both soft-switched dc-to-dc converter with boost converter as a pre-regulator for input power factor correction (PFC). The proposed converter structure provides a cost reduction and easy implementation of compatibility between single-phase 220V and three-phase 220V/380V with their inputs in delta or wye connections.

  • PDF

The Design of PFC Converter based on Digital Controller (디지털 제어기를 이용한 PFC 컨버터의 설계)

  • Lee, Hyeok-Jin;Ju, Jeong-Gyu;Yang, O;An, Tae-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.987-990
    • /
    • 2003
  • 산업현장에서의 인터넷환경 및 원격 제어를 위한 시스템 개발에서 신뢰성이 있고 경제적이며 지능적인 Power Supply가 요구되고 있다. 최근 통신시스템의 Power Supply는 수 kA이상의 출력전류를 가지고 있으며 최소 10개 이상의 모듈로 이루어져 있다. High-End 서버 시스템과 같이 수백 개의 마이크로프로세서를 내장한 시스템은 수십 kW의 전력을 소모한다. 이들이 사용하는 Power Supply는 별도의 시스템 제어기와의 통신으로 시스템에서 발생하는 발열, 소모전력, Total Harmonic Distortion (THD)에 대한 정보를 바탕으로 시스템이 갖는 각각의 Module에 대해 효과적이고 신뢰성 있는 전력공급을 하여야 만다. Distributed Power System (DPS)에서 가장 중요만 역할을 담당하는 Power Factor Correction (PFC) AC-DC Converter의 디지털 제어는 시스템 제어기와의 통신능력을 충분히 고려하면서 DPS를 위한 적합한 솔루션을 제공할 것이다. 본 논문에서는 Digital Signal Processor (DSP)를 사용하여 PFC 제어에 필요한 전파정류전압, 입력전류, 출력전압을 계측하여 역률개선과 THD의 저감을 위한 전류의 추종을 제어하면서 이들 제어기에서의 파라미터를 PC를 통해 모니터하여 최근의 추세를 만족시킬 수 있는 시스템을 구현할 수 있을 것으로 사료된다.

  • PDF

A Design of PFC Circuit for Reducing the Harmonic in Constant Voltage-fed Electronic Ballast Circuit (정전압형 전자식 안정기 회로의 고조파 저감을 위한 PFC회로의 설계)

  • 이현우;이현무;고강훈;고희석
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.4
    • /
    • pp.41-48
    • /
    • 2004
  • In this paper, a PFC(Power Factor Correction) electronic ballast with constant voltage-fed is proposed. The proposed PFC electronic ballast is combined of a high-efficiency boost converter and a conventional half bridge inverter. It is proved that the ripple of input-current and the input-current's harmonic of the proposed PFC electronic ballast are reduced using the voltage divider and soft-switching technique. It is demonstrated that simulation results for fluorescent lamp correspond with theoretical analysis.

Improved Power Quality IHQRR-BIFRED Converter Fed BLDC Motor Drive

  • Singh, Bhim;Bist, Vashist
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.256-263
    • /
    • 2013
  • This paper presents an IHQRR (Integrated High Quality Rectifier Regulator) BIFRED (Boost Integrated Flyback Rectifier Energy Storage DC-DC) converter fed BLDC (Brushless DC) motor drive. A reduced sensor topology is derived by utilizing a BIFRED converter to operate in a dual DCM (Discontinuous Conduction Mode) thus utilizing a voltage follower approach for the PFC (Power Factor Correction) and voltage control. A new approach for speed control is proposed using a single voltage sensor. The speed of the BLDC motor drive is controlled by varying the DC link voltage of the front end converter. Moreover, fundamental frequency switching of the VSI's (Voltage Source Inverter) switches is used for the electronic commutation of the BLDC motor which reduces the switching losses in the VSI. The proposed drive is designed for a wide range of speed control with an improved power quality at the AC mains which falls within the recommended limits imposed by international power quality standards such as IEC 61000-3-2.

A study on the haromnic attenuation of the BF Converter (BF 컨버터의 고조파 감쇠에 관한 연구)

  • 최태섭;안인수;임승하;사공석진
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.4
    • /
    • pp.8-15
    • /
    • 2000
  • In this paper, we realize the active PFC(Power Factor Correction) system of BF(Boost Forward) converter with PWM-PFM(Pulse Width Modulation-Pulse Frequency Modulation) control technique to control DC output voltage, to remove the noise like harmonics at output voltage, and to control the input current with sinusoidal wave synchronized by the source voltage.To achieve the desired load voltage and improved PFC, we first implement current shaping control at the inverting stage and make the converted output DC voltage with forward converter. After making the ratio of output voltage to current as 50V/1A and the duty ratio greater than 0.5. When input voltage is 30V and boost inductance is 1.1mH. we control the voltage changing rate according to the variation of load resistance using a PWM-PFM control technique. And finally we prove experimentally, we attenuated its harmonics and improved PF up to 0.96 using the current shaping technique.

  • PDF

A Study on Characteristic Estimation of Single-Stage High Frequency Resonant DC-DC (단일 전력단 고주파 공진 DC-DC 컨버터의 특성평가에 관한 연구)

  • Won, Jae-Sun;Park, Jae-Wook;Nam, Seung-Sik;Sim, Kwang-Yeal;Lee, Bong-Seob;Kim, Dong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.318-320
    • /
    • 2003
  • This paper presents a novel single-stage high frequency resonant DC-DC converter using zero voltage switching with high input power factor. The proposed high frequency resonant converter integrates half-bridge boost rectifier as power factor corrector (PFC) and half-bridge resonant converter into a single stage. The input stage of the half-bridge boost rectifier is working in discontinuous conduction mode(DCM) with constant duty cycle and variable switching frequency. So that a high power factor is achieved naturally. Simulation results through the Pspice have demonstrated the feasibility of the Proposed DC-DC converter. This proposed converter will be able to be practically used as a power supply in various fields as induction heating applications, DC-DC converter etc.

  • PDF

Single Stage Power Factor Correction Using A New Zero-Voltage-Transition Isolated Full Bridge PWM Boost Converter

  • Jeong, Chang.-Y.;Cho, Jung-G.;Baek, Ju-W.;Song, Du-I.;Yoo, Dong-W.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.694-700
    • /
    • 1998
  • A novel zero-voltage-transition (ZVT) isolated PWM boost converter for single stage power factor correction (PFC) is presented to improve the performance of the previously presented ZVT converter[8]. A simple auxiliary circuit which includes only one active switch provides zero-voltage-switching (ZVS) condition to all semiconductor devices. (Two active switches are required for the previous ZVT converter) This leads to reduced cost and simplified control circuit comparing to the previous ZVT converter. The ZVS is achieved for wide line and load ranges with minimum device voltage and current stresses. Operation principle, control strategy and features of the proposed converter are presented and verified by the experimental results from a 1.5 kW, 100 KHz laboratory prototype.

  • PDF

A Novel Soft Switching PWM·PFC AC·DC Boost Converter

  • Sahin, Yakup
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.256-262
    • /
    • 2018
  • This study introduces a novel Soft Switching (SS) Pulse Width Modulated (PWM) AC-DC boost converter. In the proposed converter, the main switch is turned on with Zero Voltage Transition (ZVT) and turned off with Zero Current Transition (ZCT). The main diode is turned on with Zero Voltage Switching (ZVS) and turned off with Zero Current Switching (ZCS). The auxiliary switch is turned on and off with ZCS. All auxiliary semiconductor devices are turned on and off with SS. There is no extra current or voltage stress on the main semiconductor devices. The majority of switching energies are transferred to the output by auxiliary transformer. Thus, the current stress of auxiliary switch is significantly reduced. Besides, the proposed converter has simple structure and ease of control due to common ground. The theoretical analysis of the proposed converter is verified by a prototype with 100 kHz switching frequency and 500 W output power. Furthermore, the efficiency of the proposed converter is 98.9% at nominal output power.

Analysis on the start-up mode in PFC converter (PFC 기능을 갖는 돌입전류 방지 기법)

  • Song, Sang-Hyuck;Lee, Sang-Hyeok;Gong, Sang-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.471-472
    • /
    • 2015
  • 본 논문에서는 PFC(Power Factor Correction) 컨버터가 초기 구동시 발생하는 돌입전류를 제어하기 위한 새로운 PFC 컨버터를 제안한다. 기존 Boost 구조를 갖는 PFC 컨버터는 안정적인 출력 전압을 생성하기 위해 출력단에 큰 커패시터가 필수적이지만 방전된 커패시터에 AC 전압이 인가되면 단락 상태가 되어 큰 돌입전류가 발생하게 된다. 이를 해결하기 위해 본 논문에서는 시뮬레이션을 통해 기존 PFC 컨버터의 돌입전류 문제점을 파악하고 제안된 PFC 컨버터로 돌입전류를 제어함으로써 안정적인 동작 상태와 효율적인 PFC 컨버터의 타당성을 검증하였다.

  • PDF

Characteristic Estimation of Single-Stage High Frequency Resonant Inverter Link Type DC-DC Converter (단일 전력단 고주파 공진 인버터 링크형 DC-DC 컨버터의 특성평가)

  • Won, Jae-Sun;Kim, Hae-Jun;Park, Jae-Wook;Nam, Seung-Sik;Seo, Cheol-Sik;Kim, Dong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1190-1192
    • /
    • 2003
  • This paper presents a novel single-stage high frequency resonant inverter link type DC-DC converter using zero voltage switching with high input power factor. The proposed high frequency resonant converter integrates half-bridge boost rectifier as power factor corrector (PFC) and half-bridge resonant converter into a single stage. The input stage of the half-bridge boost rectifier is working in discontinuous conduction mode(DCM) with constant duty cycle and variable switching frequency. So that boost converter make the line current follow naturally the sinusoidal line voltage waveform. Experimental results have demonstrated the feasibility of the proposed DC-DC converter. This proposed converter will be able to be practically used as a power supply in various fields as induction heating applications, DC-DC converter etc.

  • PDF