• Title/Summary/Keyword: PETG

Search Result 10, Processing Time 0.026 seconds

A Study on Fabrication of Polyester Copolymers (Ⅵ) -Physical Properties of PET/PETG Copolymer Blend by the Drawing Conditions- (폴리에스테르 공중합체의 Fabrication 연구 (Ⅵ) -PET/PETG 공중합체 블렌드의 연신조건에 따른 물리적 특성-)

  • 현은재;이소화;김기영;제갈영순;장상희
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.335-343
    • /
    • 2002
  • Blend resin (PET/PETG 70/30 blend) of poly (ethylene terephthalate) (PET) and poly (ethylene terephthalate glycol) (PETG) of weight percent 70/30 was prepared by a twin-screw extruder. Undrawn films of the blend and pure PETG were made by melt-press in hot press. Drawn films were made by capillary rheometer. Crystallinity, shrinkage, thermal, dynamic mechanical, and mechanical properties of these blends and PETG drawn films were investigated by wide angle X-ray diffractometer, dry oven, DSC thermal analyzer, and tensile tester. The crystallinity and density of these films increased with increasing draw ratio and draw rate but decreased with increasing draw temperature. The crystallinity and density of the blend films were higher than those of PETG films. The tensile strength and tensile modulus of these drawn alms increased with increasing draw ratio and draw rate but decreased with increasing draw temperature. The tensile strength and tensile modulus of blend films were higher than those of PETG films. Shrinkage of PETG md blend films decreased with draw ratio and draw rate. Shrinkage of undrawn blend film was 600% higher than that of pure PET film.

Characterization and 3D Analysis of PETG/POE Thermoplastic Composites (PETG/POE 열가소성 복합재료의 특성평가 및 전산해석)

  • Yu, Seong-Hun;Lee, Jong-Hyuk;Sim, Ji-Hyun
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.360-367
    • /
    • 2019
  • In order to apply thermoplastic composites using PETG resin to various industrial fields such as bicycle frames and industrial parts, it is necessary to verify the impact resistance, durability, mechanical properties and 3D analysis of the manufactured composite materials. To improve the mechanical properties, durability and impact resistance of PETG resin, an amorphous resin, in this study, compound and injection molding process were carried out enhanced various weight percent POE(polyolefin elastomer). The thermal and mechanical properties of the thermoplastic composites, and the charpy impact strength, The analysis was performed to evaluate the characteristics according to weight percent of POE. Charpy impact strength test was conducted to analyze the impact characteristics, and the fracture section was analyzed after the impact strength test. In the case of POE material-added thermoplastic composites, thermal and mechanical properties tend to decrease, but workability and impact resistance tend to be superior to those of PETG materials.

Characterization of PETG Thermoplastic Composites Enhanced TiO2, Carbon Black, and POE (TiO2, Carbonblack 및 POE로 보강된 열가소성 PETG 복합재료의 특성)

  • Yu, Seong-Hun;Lee, Jong-hyuk;Sim, Jee-hyun
    • Textile Coloration and Finishing
    • /
    • v.31 no.4
    • /
    • pp.354-362
    • /
    • 2019
  • In order to apply thermoplastic composites using PETG resin to various industrial fields such as bicycle frames and industrial parts, it is necessary to verify the impact resistance, durability and mechanical properties of the manufactured composite materials. To improve the mechanical properties, durability and impact resistance of PETG resin, an amorphous resin, in this study, compound and injection molding process were carried out using various additives such as TiO2, carbon black, polyolefin elastomer, and PETG amorphous resin. The thermal and mechanical properties of the thermoplastic composites, and the Charpy impact strength. The analysis was performed to evaluate the characteristics according to the types of additives. DSC and DMA analyzes were performed for thermal properties, and tensile strength, flexural strength, and tensile strength change rate were measured using a universal testing machine to evaluate mechanical properties. Charpy impact strength test was conducted to analyze the impact characteristics, and the fracture section was analyzed after the impact strength test. In the case of POE material-added thermoplastic composites, thermal and mechanical properties tend to decrease, but workability and impact resistance tend to be superior to those of PETG materials.

The Stability of Chlorobutanol Solution in Polyethylene and Glycol-modified Polyethylene Terephthalate Containers (Polyethylene과 Glycol-modified Polyethylene Terephthalate 용기내에서의 Chlorobutanol용액의 안정성)

  • Min, Shin-Hong;Kwon, Jong-Won;Jheong, Gu-Choong
    • Journal of Pharmaceutical Investigation
    • /
    • v.16 no.1
    • /
    • pp.8-11
    • /
    • 1986
  • There have been many difficulties in utilization of polyethylene (PE) container for volatile ingredients because of its high permeability. We selected glycol-modified polyethylene terephthalate (PETG) lately being used and evaluated the stability of 0.5% chlorobutanol solution for PETG. We used PE bottle, glass flask and rubber stoppered vial for comparison and assayed chlorobutanol contents of the samples stored at various temperatures for nine weeks by HPLC method. The results indicated that the stability of chlorobutanol in PETG container was almost similar to that in glass flask, and was superior to that in PE bottle and rubber stoppered vial.

  • PDF

A new type of clear orthodontic retainer incorporating multi-layer hybrid materials

  • Ahn, Hyo-Won;Kim, Kyung A;Kim, Seong-Hun
    • The korean journal of orthodontics
    • /
    • v.45 no.5
    • /
    • pp.268-272
    • /
    • 2015
  • Clear thermoplastic retainers have been widely used in daily orthodontics; however, they have inherent limitations associated with thermoplastic polymer materials such as dimensional instability, low strength, and poor wear resistance. To solve these problems, we developed a new type of clear orthodontic retainer that incorporates multi-layer hybrid materials. It consists of three layers; an outer polyethylenterephthalate glycol modified (PETG) hard-type polymer, a middle thermoplastic polyurethane (TPU) soft-type polymer, and an inner reinforced resin core. The resin core improves wear resistance and mechanical strength, which prevent unwanted distortion of the bucco-palatal wall of the retainer. The TPU layer absorbs impact and the PETG layer has good formability, optical qualities, fatigue resistance, and dimensional stability, which contributes to increased support from the mandibular dentition, and helps maintain the archform. This new type of vacuum-formed retainer showed improved mechanical strength and rate of water absorption.

A Study on the Development of Facillities for Preservation of Kimchi (김치 저장 용기 개발에 관한 연구)

  • 안명수;이진영
    • Korean journal of food and cookery science
    • /
    • v.12 no.4
    • /
    • pp.499-505
    • /
    • 1996
  • The facillities for Kimchi preservation were investigated in order to develop the taste, flavor and commercial quality of Kimchi during fermentation. Four kinds of facillities used for this experiment were PP(Polypropylene). PSC(Polypropylene+ceramic)and PPP was selected newly and laminated of three layers with PETG (Polyester G), PS (Polystyrene) and PETG. The change of total number of lactic acid Bacteria, pH, acidity, color, gas contents and free internal volume of package were measured for the Kimchi packaged by 4 facillities during 6 days fermentation at 15$^{\circ}C$. The total No. of lactic acid Bacteria within the Kimchi in the PPP facillity was more and remained longer time (120 hrs.) than other Kimchi in the PP, PS and PPC facillities. Also the pH of all Kimchi were decreased to pH 4 within 72 hrs. and the pH of Kimchi in the PPP facillity was kept as pH 4 for 120 hrs., so that was shown to be decreased more dully than others. In case of fimchi in the PPP facillity, the color was retained better, CO$_2$ contents was lower similar to PPC facillity, and swelling degree of free internal volume was higher than others. By the sensory evaluation, the Kimchi in the PPP facillity represented as better than others for color, flavor, texture and total preferences until 48 hrs. fermentation. And the PPP facillity is transparent, so these will be selected and confirmed more easily, also PPP facillity is so hard to endure the swelling pressure of internal gas. Therefore it is thought that the PPP facillity used as Kimchi package will be desirable for better taste, flavor, and commercial quality.

  • PDF

Change of Glass Transition Temperature of PETG Containing Gas (가스를 포함하는 고분자 재료(PETG)의 유리전이온도 변화)

  • Cha, Seong-Un;Yun, Jae-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.824-829
    • /
    • 2000
  • The industries use polymer materials for many purposes because they have many merits. But these materials' costs take up too much proportion in overall cost of products that use these materials as their major material. So it is very economical for polymer industries to reduce these costs. Microcellular foaming process appeared in 1980's to solve this problem and it proved to be quite successful. This process uses inert gases such as CO2, N2. As these gases are dissolved into polymer matrices. many properties are changed. Glass transition temperature is one of these properties. DSC, DMA are devices that measures this temperature, but these are not sufficient to measure the temperature of polymer containing gas. In this paper, we devised a new tester that uses magnetism. We used this device to acquire data of the change of glass transition temperature and made Cha-Yoon model that can predict the change of glass transition temperature. Using this model, the change of this temperature can be estimated as a function of weight gain of gas. Cha-Yoon model proved that Chow's model is inappropriate to predict the change of glass transition temperature of polymer matrices containing gas.

Radiological Characteristics of Materials Used in 3-Dimensional Printing with Various Infill Densities

  • Park, So-Yeon;Choi, Noorie;Choi, Byeong Geol;Lee, Dong Myung;Jang, Na Young
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.155-159
    • /
    • 2019
  • Radiological properties of newly introduced and existing 3-dimensional (3D) printing materials were evaluated by measuring their Hounsfield units (HUs) at varying infill densities. The six materials for 3D printing which consisted of acrylonitrile butadiene styrene (ABS), a unique ABS plastic blend manufactured by Zortrax (ULTRAT), high impact polystyrene (HIPS), polyethylene terephthalate glycol (PETG), polylactic acid (PLA), and a thermoplastic polyester elastomer manufactured by Zortrax (FLEX) were used. We used computed tomography (CT) imaging to determine the HU values of each material, and thus assess its suitability for various applications in radiation oncology. We found that several material and infill density combinations resembled the HU values of fat, soft tissues, and lungs; however, none of the tested materials exhibited HU values similar to that of bone. These results will help researchers and clinicians develop more appropriate instruments for improving the quality of radiation therapy. Using optimized infill densities will help improve the quality of radiation therapy by producing customized instruments for each field of radiation therapy.

Cross-section Morphology and Surface Roughness of an Article Manufactured by Material Extrusion-type 3D Printing according to the Thermal Conductivity of the Material

  • Woo, In Young;Kim, Do Yeon;Kang, Hong Pil;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.55 no.1
    • /
    • pp.46-50
    • /
    • 2020
  • Material extrusion (ME)-type 3D printing is the most popular among the 3D printing processes. In this study, the cross-section morphologies of ME-type 3D printing manufactured specimens were observed with respect to the thermal properties of the material. The cross-section morphology of a specimen is related to the deposition strength, and the outside profile of the cross-section is related to the surface roughness. The filaments used in this study, with different thermal conductivities, were the acrylonitrile-butadiene-styrene (ABS), the high impact polystyrene (HIPS), the glycol-modified polyethylene terephthalate (PETG), and the polylactic acid (PLA). The cross-sections and the surfaces of the 3D manufactured specimens were examined. In ME-type 3D printing, the filaments are extruded through a nozzle and they form a layer. These layers rapidly solidify and as a result, they become a product. The thermal conductivity of the material influences the cooling and solidification of the layers, and subsequently the cross-section morphology and the surface roughness.

Evaluation for Volatile Organic Compounds (VOCs) Emitted from Fused Deposition Modeling (FDM) 3D Printing Filaments (FDM 3D프린터 소재에서 방출될 수 있는 휘발성유기화합물 평가)

  • Kim, Sungho;Park, Hae Dong;Chung, Eunkyo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.2
    • /
    • pp.153-162
    • /
    • 2022
  • Objectives: Fused deposition modeling (FDM) 3D printer which is one of the material extrusion (MEX) technologies is an additive manufacturing (AM) process. 3D printers have been distributed widely in Korea, particularly in school and office, even at home. Several studies have shown that nanoparticles and volatile organic compounds (VOCs) were emitted from an FDM 3D printing process. The objective of this study was to identify types of chemicals possibly emitted from FDM 3D printing materials such as PLA (polylactic acid), ABS (acrylonitrile butadiene styrene), nylon, PETG (polyethylene terephthalate glycol), PVA (polyvinyl alcohol), PC (polycarbonate) filaments. Methods: 19 FDM 3D printing filaments which have been distributed in Korea were selected and analyzed VOCs emitted of 3D printing materials by headspace gas chromatography mass spectrometry (headspace GC-MS). Subsamples were put into a vial and heated up to 200℃ (500 rpm) during 20 minutes before analyzing FDM 3D printing filaments. Results: In the case of PLA filament, lactide and methyl methacrylate, the monomer components of one, were detected, and the volume ratio ranged 27~93%, 0.5~37% respectively. In the case of ABS filaments, styrene (50.5~59.1%), the monomer components of one, was detected. Several VOCs among acetaldehyde, toluene, ethylbenzene, xylene, etc were detected from each FDM 3D printing filaments. Conclusions: Several VOCs, semi-VOCs were emitted from FDM 3D printing filaments in this study and previous studies. Users were possibly exposed to ones so that we strongly believe that we recommend to install the ventilation system such as a local exhaust ventilation (LEV) when they operate the FDM 3D printers in a workplace.