A Study on Fabrication of Polyester Copolymers (Ⅵ) -Physical Properties of PET/PETG Copolymer Blend by the Drawing Conditions-

폴리에스테르 공중합체의 Fabrication 연구 (Ⅵ) -PET/PETG 공중합체 블렌드의 연신조건에 따른 물리적 특성-

  • Published : 2002.05.01

Abstract

Blend resin (PET/PETG 70/30 blend) of poly (ethylene terephthalate) (PET) and poly (ethylene terephthalate glycol) (PETG) of weight percent 70/30 was prepared by a twin-screw extruder. Undrawn films of the blend and pure PETG were made by melt-press in hot press. Drawn films were made by capillary rheometer. Crystallinity, shrinkage, thermal, dynamic mechanical, and mechanical properties of these blends and PETG drawn films were investigated by wide angle X-ray diffractometer, dry oven, DSC thermal analyzer, and tensile tester. The crystallinity and density of these films increased with increasing draw ratio and draw rate but decreased with increasing draw temperature. The crystallinity and density of the blend films were higher than those of PETG films. The tensile strength and tensile modulus of these drawn alms increased with increasing draw ratio and draw rate but decreased with increasing draw temperature. The tensile strength and tensile modulus of blend films were higher than those of PETG films. Shrinkage of PETG md blend films decreased with draw ratio and draw rate. Shrinkage of undrawn blend film was 600% higher than that of pure PET film.

블렌드 (PET/PETG 70/30 블렌드) 수지는 폴리에틸렌테레프탈레이트 (PET)와 폴리에틸렌테레프탈레이트 글리콜 (PETG)을 무게 비 70/30으로 혼합하여, 이축 압출기를 사용하여 제조하였다. 미연신 필름은 이 블렌드와 순수 PETG 수지를 압축성형기로 각각 용융 압축시켜 제조하였고 연신 필름은 미연신 필름을 모세관 레오메타를 사용하여 연신시켜 제조하였다. 제조된 블렌드 연신 필름과 PETG 연신 필름의 결정성, 수축율, 열적, 동역학적 및 기계적 특성을 X-선 회절분석기, 오븐기, DSC, 및 인장시험기를 사용하여 조사하였다. 블렌드와 PETG필름의 결정화도와 밀도는 연신비와 연신 속도의 증가와 더불어 증가하였으나 반면 연신 온도 증가와 더불어 감소하였다 또한 블렌드 필름의 결정화도와 밀도는 PETG 필름보다 높게 나타났다. 두 필름의 인장강도와 인장탄성률은 연신비 및 연신 속도 증가와 더불어 증가하였고 연신온도 증가에 따라 감소하였다. 또한 블렌드 필름의 인장강도와 인장탄성률이 PETG 필름 보다 높게 나타났다. 두 필름의 수축율은 연신비와 연신 속도가 증가할수록 감소하였고 미연신 블렌드 필름의 수축율이 순수 PET 필름보다 600% 증가함을 보였다.

Keywords

References

  1. J. Polym. Sci. Polym. Phys. Ed. v.12 G. Groeninckx;H. Berghmans;N. Overbergh;G. Smets https://doi.org/10.1002/pol.1974.180120207
  2. J. Appl. Polym. Sci. v.29 S. M. Aharoni https://doi.org/10.1002/app.1984.070290314
  3. J.Polym.Sci.,Poly.Phys.Ed. v.16 L. Gutzow;V. Dochev;E. Pancheva;K. Dimov https://doi.org/10.1002/pol.1978.180160702
  4. Polymer v.25 G. Tururro;V. G. R. Brown;L. E. St-Pierre https://doi.org/10.1016/0032-3861(84)90033-8
  5. Polymer v.11 F. L. Binsbergen https://doi.org/10.1016/0032-3861(70)90036-4
  6. Polym.Eng.Sci. v.24 J. Noolandi https://doi.org/10.1002/pen.760240203
  7. J. Appl. Polym. Sci. v.29 A. Blaga;D. Feldman;D. Banu https://doi.org/10.1002/app.1984.070291119
  8. Polym.Eng.Sci. v.24 S. A. Jabarin https://doi.org/10.1002/pen.760240513
  9. Polymer v.35 J. B. Faisant de Champchesnel;J. F. Tassin
  10. Polym. Eng. Sci. v.23 F. A. Motashar;A. P. Unwin;G. Cragges;I. M. Ward
  11. Polymer v.38 J. B. Faisant de Champchenel;J. F. Tassin https://doi.org/10.1016/S0032-3861(96)01001-4
  12. Polymer v.33 D. R. Salem https://doi.org/10.1016/0032-3861(92)90233-M
  13. Polymer v.33 D. R. Salem https://doi.org/10.1016/0032-3861(92)90232-L
  14. Proceedings of International Symposium on Orientation of Polymer : Application to Films and Fibers D. R. Salem
  15. Polymer v.35 B. Huang;M. Ito;T. Kanamoto https://doi.org/10.1016/0032-3861(94)90033-7
  16. Conference Proceedings at ANTEC v.2 R. J. Yan;A. Ajji;M. Dumoulin
  17. Polymer v.37 D. J. Bludell;D. H. Mackerron;W. Fuller;A. Mahendrasingam;C. Martin;R. J. Oldman;R. J. Rule;C. Riekel https://doi.org/10.1016/0032-3861(96)88476-X
  18. Polymer v.37 A. Ajji;J. Guevremont;K. C. Cole;M. M. Dumoulin https://doi.org/10.1016/0032-3861(96)00175-9
  19. Polym. Eng. Sci. v.32 M. Evstatiev;S. Fakirov;A. Apostolov https://doi.org/10.1002/pen.760321408
  20. Macromolecules v.3 W. T. Mead;A. E. Zachariades;T. Shimada;R. S. Porter
  21. J. Polym. Sci. v.4 J. B. Lando;H. L. Olf;A. Peterlin https://doi.org/10.1002/pol.1966.150040420
  22. J. Polym. Sci. v.8 R. Hasegawa;Y. Tanabe;M. Kobayashi;H. Tadokoro;A. Sawaoka;N. Kawai
  23. J. Polym. Sci., Polym. Phys. Ed. v.17 W T. Mead;C. R. Desper;R. S. Porter https://doi.org/10.1002/pol.1979.180170511
  24. J. Appl. Polym. Sci. v.14 J. H. Southern;R. S. Porter https://doi.org/10.1002/app.1970.070140910
  25. Polymer J. v.17 K. Dhawan;P. C. Jain;V. S, Nanda https://doi.org/10.1295/polymj.17.577
  26. The Strength and Stiffness of Polymer A. E. Zachariades;R. S. Porter
  27. Polymer v.35 A. Legros;P. J. Carreau;B. D. Favis https://doi.org/10.1016/0032-3861(94)90873-7
  28. J. Korean Fiber Soc. v.36 S. H. Lee;E. J. Hyun;S. H. Hwang;Y. S. Gal;S. H. Jang;B. S. Kim
  29. Polymer v.37 D. J. Blundell;D. H. Mackerron;W. Fuller;A. Mahendrasingam;C. Martin;R. J. Oldman;R. J. Rule;C. Riekel https://doi.org/10.1016/0032-3861(96)88476-X
  30. Polymer v.39 B. Sun;Y. Lu;H. Ni;C. Wang https://doi.org/10.1016/S0032-3861(97)00252-8
  31. Polymer v.38 Y. Sakaguchi https://doi.org/10.1016/S0032-3861(96)00771-9
  32. J. Polym. Sci., Polym. Phys. Ed. v.25 M. Ito;K. Tanaka https://doi.org/10.1002/polb.1987.090251007
  33. Mem. of the Fac. of Eng. v.23 M.Takayanagi
  34. Physical Properties of Textile Fibers W. E. Morton;J. W. S. Hearle