Browse > Article
http://dx.doi.org/10.7234/composres.2019.32.6.360

Characterization and 3D Analysis of PETG/POE Thermoplastic Composites  

Yu, Seong-Hun (DYETEC Institute)
Lee, Jong-Hyuk (DYETEC Institute)
Sim, Ji-Hyun (DYETEC Institute)
Publication Information
Composites Research / v.32, no.6, 2019 , pp. 360-367 More about this Journal
Abstract
In order to apply thermoplastic composites using PETG resin to various industrial fields such as bicycle frames and industrial parts, it is necessary to verify the impact resistance, durability, mechanical properties and 3D analysis of the manufactured composite materials. To improve the mechanical properties, durability and impact resistance of PETG resin, an amorphous resin, in this study, compound and injection molding process were carried out enhanced various weight percent POE(polyolefin elastomer). The thermal and mechanical properties of the thermoplastic composites, and the charpy impact strength, The analysis was performed to evaluate the characteristics according to weight percent of POE. Charpy impact strength test was conducted to analyze the impact characteristics, and the fracture section was analyzed after the impact strength test. In the case of POE material-added thermoplastic composites, thermal and mechanical properties tend to decrease, but workability and impact resistance tend to be superior to those of PETG materials.
Keywords
PETG thermoplastic composite; Compound; Injection molding; Polyolefin elastomer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Franciszczak, P., Piesowicz, E., and Kalnins, K., "Manufacturing and Properties of r-PETG/PET Fibre Composite - Novel Approach for Recycling of PETG Plastic Scrap into Engineering Compound for Injection Moulding," Composites Part B: Engineering, Vol. 154, No. 1, 2018, pp. 430-438.   DOI
2 Phetphaisit, C.W., Namahoot, J., Saengkiettiyut, K., Ruamcharoen, J., and Ruamcharoen, P., "Green Metal Organic Coating from Recycled PETs and Modified Natural Rubber for the Automobile Industry," Progress in Organic Coatings, Vol. 86, 2015, pp. 181-189.   DOI
3 Borg, R.P., Baldacchino, O., and Ferrara, L., "Early Age Performance and Mechanical Characteristics of Recycled PET Fibre Reinforced Concrete," Construction and Building Materials, Vol. 166, 2016, pp. 29-47.
4 Jo, B.-W., Park, S.-K., and Park, J.-C., "Mechanical Properties of Polymer Concrete Made with Recycled PET and Recycled Concrete Aggregates," Construction and Building Materials, Vol. 22, No. 12, 2008, pp. 2281-2291.   DOI
5 Zhang, X., Li, B., Wang, K., Zhang, Q., and Fu, Q., "The Effect of Interfacial Adhesion on the Impact Strength of Immiscible PP/PETG Blends Compatibilized with Triblock Copolymers," Polymer, Vol. 50, No. 19, 2009, pp. 4737-4744.   DOI
6 Lacroix, C., Bousmina, M., Carreau, P.J., Favis, B.D., and Michel, A., "Properties of PETG/EVA Blends: 1. Viscoelastic, Morphological and Interfacial Properties," Polymer, Vol. 37, No. 14, 1996, pp. 2939-2947.   DOI
7 Hwang, S.H., Jeong, K.S., and Jung, J.C., "Thermal and Mechanical Properties of Amorphous Copolyester (PETG)/LCP Blends," European Polymer Journal, Vol. 35, No. 8, 1999, pp. 1439-1443.   DOI
8 Shi, Q., Chen, C., Gao, L., Jiao, L., and Guo, W., "Physical and Degradation Properties of Binary or Ternary Blends Composed of Poly(lactic acid), Thermoplastic Starch and GMA Grafted POE," Polymer Degradation and Stability, Vol. 96, No. 1, 2011, pp. 175-182.   DOI
9 Li, S., Lv, Y., Sheng, J., Tian, H., and Tian, M., "Morphology Development of POE/PP Thermoplastic Vulcanizates (TPVs) during Dynamic Vulcanization," European Polymer Journal, Vol. 93, 2017, pp. 590-601.   DOI
10 Shi, M., Yang, Y.-Y., Chaw, C.-S., Goh, S.-H., and Heller, J., "Double Walled POE/PLGA Microspheres: Encapsulation of Water-soluble and Water-insoluble Proteins and Their Release Properties," Journal of Controlled Release, Vol. 89, 2003, pp. 167-177.   DOI
11 Wang, B., Yang, Y., and Guo, W., "Effect of EVOH on the Morphology, Mechanical and Barrier Properties of PA6/POE-g-MAH/EVOH Ternary Blends," Materials & Design, Vol. 40, 2012, pp. 185-189.   DOI
12 Tanaka, K., and Katayama, T., "Molding of Flat Glass Fiber Reinforced Thermoplastics," Modern Physics B, Vol. 24, 2010, pp. 2555-2560.   DOI
13 Wang, B., Yang, Y., and Guo, W., "Polyolefin Thermoplastic Elastomers from 1-octene Copolymerization with 1-decene and Cyclopentene," European Polymer Journal, Vol. 93, 2017, pp. 200-211.   DOI
14 Khonakdar, H.A., Jafari, S.H., and Hesabi, M.-N., "Miscibility Analysis, Viscoelastic Properties and Morphology of Cyclic Olefin Copolymer/polyolefin Elastomer (COC/POE) Blends," Composites Part B: Engineering, Vol. 69, 2015, pp. 111-119.   DOI
15 Kwon, Y.I., Lim, E.J., and Song, Y.S., "Simulation of Injection-compression Molding for Thin and Large Battery Housing," Current Applied Physics, Vol. 18, No. 11, 2018, pp. 1451-1457.   DOI
16 Alanalp, M.B., and Durmus, A., "Quantifying Microstructural, Thermal, Mechanical and Solid-state Viscoelastic Properties of Polyolefin Blend Type Thermoplastic Elastomer Compounds," Polymer, Vol. 142, 2018, pp. 267-276.   DOI
17 Li, M.F., Chang, K.Q., Zhong, W.B., Xiang, C.X., Wang, W., Liu, Q.Z., Liu, K., Wang, Y.D., Lu, Z.T., and Wang, D., "A Highly Stretchable, Breathable and Thermoregulatory Electronic Skin Based on the Polyolefin Elastomer Nanofiber Membrane," Journal of Applied Surface Science, Vol. 486, 2019, pp. 249-256.   DOI
18 Ramkumar, P.L., Kulkarni, D.M., Abhijit, V.V.R., and Cherukumudi, A., "Investigation of MeltFlowIndex and Impact Strength of Foamed LLDPE for Rotational Moulding Process," Procedia Materials Science, Vol. 6, 2014, pp. 361-367.   DOI