• Title/Summary/Keyword: PET and F-18 FDG

Search Result 474, Processing Time 0.024 seconds

The Optimization of Reconstruction Method Reducing Partial Volume Effect in PET/CT 3D Image Acquisition (PET/CT 3차원 영상 획득에서 부분용적효과 감소를 위한 재구성법의 최적화)

  • Hong, Gun-Chul;Park, Sun-Myung;Kwak, In-Suk;Lee, Hyuk;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.13-17
    • /
    • 2010
  • Purpose: Partial volume effect (PVE) is the phenomenon to lower the accuracy of image due to low estimate, which is to occur from PET/CT 3D image acquisition. The more resolution is declined and the lesion is small, the more it causes a big error. So that it can influence the test result. Studied the optimum image reconstruction method by using variation of parameter, which can influence the PVE. Materials and Methods: It acquires the image in each size spheres which is injected $^{18}F$-FDG to hot site and background in the ratio 4:1 for 10 minutes by using NEMA 2001 IEC phantom in GE Discovey STE 16. The iterative reconstruction is used and gives variety to iteration 2-50 times, subset number 1-56. The analysis's fixed region of interest in detail part of image and compute % difference and signal to noise ratio (SNR) using $SUV_{max}$. Results: It's measured that $SUV_{max}$ of 10 mm spheres, which is changed subset number to 2, 5, 8, 20, 56 in fixed iteration to times, SNR is indicated 0.19, 0.30, 0.40, 0.48, 0.45. As well as each sphere's of total SNR is measured 2.73, 3.38, 3.64, 3.63, 3.38. Conclusion: In iteration 6th to 20th, it indicates similar value in % difference and SNR ($3.47{\pm}0.09$). Over 20th, it increases the phenomenon, which is placed low value on $SUV_{max}$ through the influence of noise. In addition, the identical iteration, it indicates that SNR is high value in 8th to 20th in variation of subset number. Therefore, to reduce partial volume effect of small lesion, it can be declined the partial volume effect in iteration 6 times, subset number 8~20 times, considering reconstruction time.

  • PDF

Estimation of Internal Motion for Quantitative Improvement of Lung Tumor in Small Animal (소동물 폐종양의 정량적 개선을 위한 내부 움직임 평가)

  • Yu, Jung-Woo;Woo, Sang-Keun;Lee, Yong-Jin;Kim, Kyeong-Min;Kim, Jin-Su;Lee, Kyo-Chul;Park, Sang-Jun;Yu, Ran-Ji;Kang, Joo-Hyun;Ji, Young-Hoon;Chung, Yong-Hyun;Kim, Byung-Il;Lim, Sang-Moo
    • Progress in Medical Physics
    • /
    • v.22 no.3
    • /
    • pp.140-147
    • /
    • 2011
  • The purpose of this study was to estimate internal motion using molecular sieve for quantitative improvement of lung tumor and to localize lung tumor in the small animal PET image by evaluated data. Internal motion has been demonstrated in small animal lung region by molecular sieve contained radioactive substance. Molecular sieve for internal lung motion target was contained approximately 37 kBq Cu-64. The small animal PET images were obtained from Siemens Inveon scanner using external trigger system (BioVet). SD-Rat PET images were obtained at 60 min post injection of FDG 37 MBq/0.2 mL via tail vein for 20 min. Each line of response in the list-mode data was converted to sinogram gated frames (2~16 bin) by trigger signal obtained from BioVet. The sinogram data was reconstructed using OSEM 2D with 4 iterations. PET images were evaluated with count, SNR, FWHM from ROI drawn in the target region for quantitative tumor analysis. The size of molecular sieve motion target was $1.59{\times}2.50mm$. The reference motion target FWHM of vertical and horizontal was 2.91 mm and 1.43 mm, respectively. The vertical FWHM of static, 4 bin and 8 bin was 3.90 mm, 3.74 mm, and 3.16 mm, respectively. The horizontal FWHM of static, 4 bin and 8 bin was 2.21 mm, 2.06 mm, and 1.60 mm, respectively. Count of static, 4 bin, 8 bin, 12 bin and 16 bin was 4.10, 4.83, 5.59, 5.38, and 5.31, respectively. The SNR of static, 4 bin, 8 bin, 12 bin and 16 bin was 4.18, 4.05, 4.22, 3.89, and 3.58, respectively. The FWHM were improved in accordance with gate number increase. The count and SNR were not proportionately improve with gate number, but shown the highest value in specific bin number. We measured the optimal gate number what minimize the SNR loss and gain improved count when imaging lung tumor in small animal. The internal motion estimation provide localized tumor image and will be a useful method for organ motion prediction modeling without external motion monitoring system.

Synchronous Double Primary Cancers of Lung and Liver (폐와 간의 동시성 원발성 중복암)

  • Lim, So Yeon;Sim, Yun Su;Lee, Jin Hwa;Kim, Tae-Hun;Ryu, Yon Ju;Chun, Eun Mi;Kim, Yoo Kyung;Lee, Jung Kyong;Sung, Sun Hee;Ahn, Jae Ho;Chang, Jung Hyun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.62 no.4
    • /
    • pp.318-322
    • /
    • 2007
  • Although reports of multiple primary malignant tumors have increased recently, cases of synchronous double primary tumors of lung and liver are rare. A 73-year-old man suffered from chronic cough. His chest x-ray showed segmental atelectasis of the right upper lobe. Bronchoscopy revealed a mass occluding the orifice of the anterior segmental bronchus of the right upper lobe, and a biopsy showed a squamous cell carcinoma. A synchronous hepatic mass was found by ultrasonography. However, F18-FDG-PET showed no evidence of a distant metastasis. The liver biopsy revealed a hepatocellular carcinoma. A right upper lobe lobectomy and a sleeve resection were performed for the lung cancer, and radiofrequency ablation was performed for the hepatocellular carcinoma.

Evaluation of absorbed dose in monkey and mouse using 18F-FDG PET and CT density information

  • Kim, Wook;Lee, Yong Jin;Park, Yong Sung;Cho, Doo-Wan;Lee, Hong-Soo;Han, Su-Cheol;Kang, Joo Hyun;Woo, Sang-Keun
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.3 no.1
    • /
    • pp.18-24
    • /
    • 2017
  • Patient-specific image-based internal dosimetry involves using the patient's individual anatomy and spatial distribution of radioactivity over time to obtain an absorbed dose calculation. Individual absorbed dose was calculated by accumulated activity multiply S-value of each organs. The aim of this study was to calculate the S-values using Monte Carlo simulation in monkey and mouse and evaluation of absorbed dose in each organ. Self-irradiation S-value of monkey heart self-irradiation was 3.15E-03 mGy-g/MBq-s, lung self-irradiation was 8.94E-04 mGy-g/MBq-s and liver self-irradiation S-value was 2.23E-03 mGy-g/MBq-s. Mouse heart self-irradiation S-value was 1.95E-01 mGy-g/MBq-s, lung was 9.59E-02 mGy-g/MBq-s, and liver was 1.40E-03 mGy-g/MBq-s. The results of this study show that the calculation protocol of image based individual absorbed dose of each organ using Monte Carlo simulation. Therefore, this study may be applied to calculate human specific absorbed dose.

Effects of Anti-thyroglobulin Antibody on the Measurement of Thyroglobulin : Differences Between Immunoradiometric Assay Kits Available (면역방사계수법을 이용한 Thyroglobulin 측정시 항 Thyroglobulin 항체의 존재가 미치는 영향: Thyroglobulin 측정 키트에 따른 차이)

  • Ahn, Byeong-Cheol;Seo, Ji-Hyeong;Bae, Jin-Ho;Jeong, Shin-Young;Yoo, Jeong-Soo;Jung, Jin-Hyang;Park, Ho-Yong;Kim, Jung-Guk;Ha, Sung-Woo;Sohn, Jin-Ho;Lee, In-Kyu;Lee, Jae-Tae;Kim, Bo-Wan
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.4
    • /
    • pp.252-256
    • /
    • 2005
  • Purpose: Thyroglobulin (Tg) is a valuable and sensitive tool as a marker for diagnosis and follow-up for several thyroid disorders, especially, in the follow-up of patients with differentiated thyroid cancer (DTC). Often, clinical decisions rely entirely on the serum Tg concentration. But the Tg assay is one of the most challenging laboratory measurements to perform accurately owing to antithyroglobulin antibody (Anti-Tg). In this study, we have compared the degree of Anti-Tg effects on the measurement of Tg between availale Tg measuring kits. Materials and Methods: Measurement of Tg levels for standard Tg solution was performed with two different kits commercially available (A/B kits) using immunoradiometric assay technique either with absence or presence of three different concentrations of Anti-Tg. Measurement of Tg for patient's serum was also performed with the same kits. Patient's serum samples were prepared with mixtures of a serum containing high Tg levels and a serum containg high Anti-Tg concentrations. Results: In the measurements of standard Tg solution, presence of Anti-Tg resulted in falsely lower Tg level by both A and B kits. Degree of Tg underestimation by h kit was more prominent than B kit. The degree of underestimation by B kit was trivial therefore clinically insignificant, but statistically significant. Addition of Anti-Tg to patient serum resulted in falsely lower Tg levels with only A kit. Conclusion: Tg level could be underestimated in the presence of anti-Tg. Anti-Tg effect on Tg measurement was variable according to assay kit used. Therefore, accuracy test must be performed for individual Tg-assay kit.

A Feasibility Study of a SiPM Based Intraoperative Beta Imaging/Gamma Probe using the Depth of Interaction Measurement (실리콘 광증폭기와 반응깊이 측정방법을 이용한 수술용 베타 영상/감마 프로브 가능성 연구)

  • Kwak, In-Suk;Kang, Han Gyu;Son, Jeong-Whan;Lee, Jae Sung;Hong, Seong Jong
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.7-14
    • /
    • 2016
  • Radiopharmaceutical agents for positron emission tomography (PET), such as $^{18}F$-FDG and $^{68}Ga$, have been used not only for whole-body PET imaging but also for intraoperative radionuclide-guided surgery due to their quantitative and sensitive imaging characteristics. Current intraoperative probes detect gamma or beta particles, but not both of them. Gamma probes have low sensitivities since a collimator has to be used to reduce backgrounds. Positron probes have a high tumor-to-background ratio, but they have a 1-2 mm depth limitation from the body surface. Most of current intraoperative probes produce only audible sounds proportional to count rates without providing tumor images. This research aims to detect both positrons and annihilation photons from $^{18}F$ using plastic scintillators and a GAGG scintillation crystal attached to silicon photomultiplier (SiPM). The depth-of-interaction (DOI) along the plastic scintillator can be used to obtain the 2-D images of tumors near the body surface. The front and rear part of the intraoperative probe consists of $4{\times}1$ plastic scintillators ($2.9{\times}2.0{\times}12.0mm^3$) for positron detection and a Ce:GAGG scintillation crystal ($12.0{\times}12.0{\times}9.0mm^3$) for annihilation photon detection, respectively. The DOI resolution of $4.4{\pm}1.6mm$ along the plastic scintillator was obtained by using the 3M enhanced specular reflector (ESR) with rectangular holes between the plastic scintillators, which showed the feasibility of a 2-D image pixel size of $2.9{\times}4.4mm^2$ (X-direction ${\times}$ Y-direction).

Evaluation of the Image Quality According to the Pre-set Method in PET/CT Image (PET/CT 영상 획득 시 사전설정법 차이에 따른 영상 질 평가)

  • Park, Sun-Myung;Lee, Hyuk;Hong, Gun-Chul;Chung, Eun-Kyung;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.41-46
    • /
    • 2011
  • Purpose: The result of exam using an imaging device is very closely related with the image quality. Moreover, this image quality can be changed according to the condition of image acquisition and evaluation method. In this study, we evaluated the image quality according to the difference of pre-set method in PET/CT image. Materials & Methods: PET/CT Discovery STe16 (GE Healthcare, Milwaukee, USA), Chest PET phantom (Experiment 1) and 94 NEMA phantom (Experiment 2) were used. Phantom were filled with $^{18}F$-FDG maintaining hot sphere and background ratio to 4:1. In the case of experiment 1, we set the radio activity concentration on 3.5, 6.0, 8.6 kBq/mL. In the case of experiment 2, we set the radio activity concentration on 3.3, 5.5, 7.7, 9.9, 12.1, 16.5 kBq/mL. All experiments were performed with the time-set method for 2 minutes 30 seconds per frame and the count-set method with one hundred million counts in 3D mode after CT transmission scan. For the evaluation of the image quality, we compared each results by using the NECR and SNR. Results: In the experiment 1, both the NECR and SNR were increased as radioactivity concentration getting increased. The NECR was shown as 53.7, 66.9, 91.4. and SNR was shown as 7.9, 10.0, 11.7. Both the NECR and SNR were increased in time-set method. But the count-set method's pattern was not similar with the time-set method. The NECR was shown as 53.8, 69.1, 97.8, and SNR was shown as 14.1, 14.7 14.4. The SNR was not increased in count-set method. In experiment 2, results of both the NECR and SNR were shown as 45.1, 70.6, 95.3, 115.6, 134.6, 162.2 and 7.1, 8.8, 10.6, 11.5, 12.7, 14.0. These results were shown similar patten with the experiment 1. Moreover, when the count-set method was applied, the NECR was shown as 42.1, 67.3, 92.1, 112.2, 130.7, 158.7, and SNR was shown as 15.2, 15.9, 15.6, 15.4, 15.5, 14.9. The NECR was increased but SNR was not shown same pattern. Conclusion: Increment of administered radioactivity improves the quality of image unconcerned with the pre-set method. However, NECR was not influenced by increment of total acquisition counts through simple increasing scan duration without increment of administered activity. In case of count-set method, the SNR was shown similar value despite of increment of radioactivity. So, the administered activity is more important than the scan duration. And we have to consider that evaluation of image quality using only SNR may not be appropriate.

  • PDF

Usefulness of Region Cut Subtraction in Fusion & MIP 3D Reconstruction Image (Fusion & Maximum Intensity Projection 3D 재구성 영상에서 Region Cut Subtraction의 유용성)

  • Moon, A-Reum;Chi, Yong-Gi;Choi, Sung-Wook;Lee, Hyuk;Lee, Kyoo-Bok;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.18-23
    • /
    • 2010
  • Purpose: PET/CT combines functional and morphologic data and increases diagnostic accuracy in a variety of malignancies. Especially reconstructed Fusion PET/CT images or MIP (Maximum Intensity Projection) images from a 2-dimensional image to a 3-dimensional one are useful in visualization of the lesion. But in Fusion & MIP 3D reconstruction image, due to hot uptake by urine or urostomy bag, lesion is overlapped so it is difficult that we can distinguish the lesion with the naked eye. This research tries to improve a distinction by removing parts of hot uptake. Materials and Methods: This research has been conducted the object of patients who have went to our hospital from September 2008 to March 2009 and have a lot of urine of remaining volume as disease of uterus, bladder, rectum in the result of PET/CT examination. We used GE Company's Advantage Workstation AW4.3 05 Version Volume Viewer program. As an analysis method, set up ROI in region of removal in axial volume image, select Cut Outside and apply same method in coronal volume image. Next, adjust minimum value in Threshold of 3D Tools, select subtraction in Advanced Processing. It makes Fusion & MIP images and compares them with the image no using Region Cut Definition. Results: In Fusion & MIP 3D reconstruction image, it makes Fusion & MIP images and compares them by using Advantage Workstation AW4.3 05's Region Cut Subtraction, parts of hot uptake according to patient's urine can be removed. Distinction of lesion was clearly reconstructed in image using Region Cut Definition. Conclusion: After examining the patients showing hot uptake on account of volume of urine intake in bladder, in process of reconstruction image, if parts of hot uptake would be removed, it could contribute to offering much better diagnostic information than image subtraction of conventional method. Especially in case of disease of uterus, bladder and rectum, it will be helpful for qualitative improvement of image.

  • PDF

Usefulness of Stomach Extension after Drinking Orange Juice in PET/CT Whole Body Scan (PET/CT 전신 영상에서 오렌지 주스(Orange Juice)를 이용한 위장 확장 영상의 유용성)

  • Cho, Seok-Won;Chung, Seok;Oh, Shin-Hyun;Park, Hoon-Hee;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.1
    • /
    • pp.86-92
    • /
    • 2009
  • Purpose: The PET/CT has a clear distinction on the lesion of the functional image by adding anatomical information. It also could reduce the examination time using CT data as the attenuation-correction. When the stomach was contracted from a fast, it could bring a misinterpretation of the cancer of the lesion with a presence of physiological $^{18}F$-FDG uptake in stomach and it occasionally would bring an additional scan to confirm. To complement this shortcoming, the method that the patients had water before the examination to extend the stomach had been attempted. However, a short excretion time of the stomach did not give sufficiently extended image of the stomach. Then the patients had additional water and had the examination again. Therefore, the noticed fact is that the stomach excretion time depends on calories, protein content, and the level of carbohydrate. In this study, we use an orange juice to evaluate the extension of the stomach and usefulness of it. Materials and Methods: PET/CT scan were obtained on total 150 of patient from February 2008 to October2008, There were 3 groups in this study and each group had 50 patients. First group drank nothing, Second group drank water and third group drank orange juice. The patients (man 25, female 25) not drinking are the age of 30~71 years old (average: 54), the patients (man: 25, female: 25) drinking water (400 cc) are the age of 28~71 years old (average: 54) and the patients (man: 25, female: 25) drinking orange juice (400 cc) are the age of 32~74 years old (average: 56). The patients were fasted in 6-8 hours before the test, the patients were not diabetic. $^{18}F$-FDG 370~555 MBq were injected intravenously. The patients were in stable position for 1 hour, than the image was obtained. The patients drank water and other patients drank orange juice before Whole body scan. The image scan started from mid-femur to skull base. The emission scan acquired for three minutes per bed and the images were reconstructed. Stomach extension analysis is measured from vertical and horizontal length. Results: Stomach Extension was described as the vertical length of the Non Drink Group was $1.20{\pm}0.50\;cm$, horizontal length was $1.4{\pm}0.53\;cm$, the vertical length of the Water Drink Group was $1.67{\pm}0.63\;cm$, horizontal length was $1.65{\pm}0.77\;cm$, the vertical length of Orange juice Drink Group was $3.48{\pm}0.77\;cm$, horizontal length was $3.66{\pm}0.77\;cm$ in coronal image. Stomach Extension was described the vertical length of the Non Drink Group was $2.03{\pm}0.62\;cm$, horizontal length was $1.69{\pm}0.68\;cm$, the vertical length of Water Drink Group was $5.34{\pm}1.62\;cm$, horizontal length was $2.45{\pm}0.72\;cm$, the vertical length of Orange juice Drink Group was $7.74{\pm}1.62\;cm$, horizontal length was $3.57{\pm}0.77\;cm$ in transverse image. The Stomach Extension has specific differences (p<0.001). The SUVs shows the Non Drink Group were measured as Liver $2.52{\pm}0.42$, Lung $0.51{\pm}0.14$, the Water Drink Group were measured as Liver $2.47{\pm}0.38$, Lung $0.50{\pm}0.14$, Orange juice Drink Group were measured as Liver $2.47{\pm}0.38$, Lung $0.50{\pm}0.14$. The SUVs did not have specific differences (p>0.759). Conclusions: There was not a large difference of SUV in three groups. When the patients drank Orange juice and water, the range extension of stomach was higher than without drinking nothing and it was possible to acquire fully extended images. Therefore, it will be possible that unnecessary additional stomach scans will be reduced by drinking orange juice before the examination so that the patients' claim from uncomfortable and long period of fast will be minimized.

  • PDF

Assessment and Comparison of SUVs of Three Different PET/CT Scanners (장비에 따른 SUV의 차이와 이에 관한 고찰)

  • Kim, Tae-Yeob;Lim, Jung-Jin;Lee, Hong-Jae;Kim, Hyun-Joo;Kim, Joong-Hyun;Lee, Jae-Sung
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.34-38
    • /
    • 2011
  • Purpose: The SUV is a widely used semi-quantitative index in PET for the estimation of radio-tracer accumulation in VOI. In this study, SUVs from three different PET/CT scanners were assessed, and differences between SUVs were evaluated. Materials and Methods: The PET/CT scanners which were assessed in this study were GEMINI, GEMINI TF 64 (Philips) and Biograph True Point True V 40 (Siemens). The NEMA PET phantom (Data Spectrum Corp., USA) was used to evaluate SUVs. The NEMA PET phantom has6.8 kg weight and three hot inserts. Two different activity distributions for the background and inserts were tested. The activity ratio were 3.7:3.7:7.4:11.1 MBq (1:1:2:3) and 1.85:7.4:9.25:11.1MBq (1:4:5:6) for each of background, insert 1, insert 2 and insert 3. Acquisition time was 2 minutes per bed position and NEMA PET phantom could be covered by two bed positions for all PET/CT scanners. The SUVs from each PET/CT scanner were compared with calculated true value. Results: For both activity ratios, all scanners showed similar results. The differences between each scanner were insignificant. Each scanner showed 91.2%, 85.9% and 87.2% of true SUV for GEMINI, GEMINI TF 64, Biograph True Point TrueV, respectively. Conclusion: For all scanners, SUVs were slightly lower than true value. However, the difference between scanners was insignificant. The SUVs from these scanners would be clinically meaningful if their consistent underestimation is kept in mind.

  • PDF