• 제목/요약/키워드: PEM(Proton Exchange Membrane) Fuel Cell

검색결과 99건 처리시간 0.025초

고분자전해질 연료전지 열화 분석방법에 의한 PEM 수전해 열화 평가 (Degradation Evaluation of PEM Water Electrolysis by Method of Degradation Analysis Used in PEMFC)

  • 오소형;양진원;추천호;나일채;박권필
    • Korean Chemical Engineering Research
    • /
    • 제59권1호
    • /
    • pp.1-5
    • /
    • 2021
  • PEM(Proton Exchange Membrane) 수전해는 PEM 연료전지와 동일한 PEM 전해질 막을 사용하며, 동일한 반응이지만 방향이 반대인 반응에 의해 진행된다. PEM 연료전지는 전해질 막과 촉매의 열화와 내구성에 대해 많은 연구가 진행되어 개발된 열화분석 방법이 많다. 본 연구에서 PEM 수전해 내구성 평가에 PEM 연료전지 내구성 평가 방법 적용이 가능한지 검토하였다. PEM 수전해 열화과정에서 PEM 연료전지와 동일한 조건으로 LSV(Linear sweep voltammetry), CV(Cyclic voltammetry), Impedance, SEM(Scanning Electron Microscope), FT-IR(Fourier Transform Infrared spectroscopy) 등을 분석해 비교하였다. PEM 연료전지처럼 막을 통과한 수소가 Pt/C 전극에서 산화되어 수소투과전류밀도를 측정함으로써 PEM 수전해 고분자 막의 열화정도를 분석할 수 있었다. 수소/질소 유입 조건에서 CV에 의한 전극활성면적(ECSA)을 측정해 전극열화를 분석할 수 있었다. 수소와 공기를 Pt/C 전극과 IrO2 전극에 공급하면서 각 전극의 임피던스를 측정해 전극과 고분자 막의 내구성을 평가할 수 있었다.

마이크로프로세서를 이용한 소형 PEM 연료전지 스택의 제어 (Control of Small PEM Fuel Cell Stack by a Microprocessor)

  • 김태훈;최우진
    • 전력전자학회논문지
    • /
    • 제13권6호
    • /
    • pp.469-475
    • /
    • 2008
  • 본 논문에서는 소형 PEM(Proton Exchange Membrane) 연료전지 스택의 마이크로프로세서를 이용한 제어에 관하여 소개한다. 연료전지 제어의 핵심 기술인 스택 내부의 수분 관리는 부하에 의해 요구되는 연료와 온도에 따른 냉각용 공기의 유량을 적절하게 조절하고, 잉여수분을 스택으로부터 배출시킴으로써 성취된다. 이러한 주변장치(BOS: Balance of Stack)의 제어는 시스템의 안정적인 운전을 좌우하는 중요한 요소이기 때문에 이를 정확하게 제어하는 것이 매우 중요하다. 본 연구에서는 최적 운전조건에서 공기유량과 퍼지주기를 측정하고 이를 바탕으로 BOS를 제어함으로써 BOS의 소비전력을 최소화하여 연료 효율을 향상시킬 수 있었으며, 이를 실험을 통해 검증하였다. 마이크로프로세서를 이용하여 개발된 제어기는 시스템의 운전 안정성을 향상시켜 소형 연료전지 스택의 제어에 널리 사용될 것으로 기대된다.

Grid-tied Power Conditioning System for Fuel Cell Composed of Three-phase Current-fed DC-DC Converter and PWM Inverter

  • Jeong, Jong-Kyou;Lee, Ji-Heon;Han, Byung-Moon;Cha, Han-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권2호
    • /
    • pp.255-262
    • /
    • 2011
  • This paper proposes a grid-tied power conditioning system for fuel cell, which consists of three-phase current-fed DC-DC converter and three-phase PWM inverter. The three-phase current-fed DC-DC converter boosts fuel cell voltage of 26-48 V up to 400 V with zero-voltage switching (ZVS) scheme, while the three-phase PWM(Pulse Width Modulation) inverter controls the active and reactive power supplied to the grid. The operation of the proposed power conditioning system with fuel cell model is verified through simulations with PSCAD/EMTDC software. The feasibility of hardware implementation is verified through experimental works with a laboratory prototype with 1.2 kW proton exchange membrane (PEM) fuel cell stack. The proposed power conditioning system can be commercialized to interconnect the fuel cell with the power grid.

세라믹 멤브레인 활용 직접 에탄올 연료전지 (Direct Ethanol Fuel Cell (DEFC) Fabricated with Ceramic Membrane)

  • 정재근;윤영훈
    • 한국수소및신에너지학회논문집
    • /
    • 제25권4호
    • /
    • pp.419-424
    • /
    • 2014
  • Direct ethanol fuel cell has been fabricated with ceramic membrane. A porous silicon carbide (SiC) membrane having approximately 30% porosity has been applied for a direct ethanol proton exchange membrane (DE-PEM) fuel cell. A horizontal type cell having Pt ($18mg/cm^2$) catalyst layer on both side of the ceramic membrane was used for the demonstration test. The ethanol oxidation based-fuel cell stack showed very high voltage (1.289V) and measurable current level (68mA) even though at room temperature.

공기환원전극 미생물연료전지에서 분리막 종류 및 환원전극 특성에 따른 전기발생 및 미생물 군집구조 변화 (Electricity Generation and Microbial Community Structure Variation Depending on Separator Types and Cathode Characteristics in Air-cathode MFC)

  • 유재철;이창열;김선아;조해인;조순자;이태호
    • 대한환경공학회지
    • /
    • 제32권2호
    • /
    • pp.113-120
    • /
    • 2010
  • 분리막의 종류 및 환원전극의 특성에 따른 전기발생량 및 미생물 군집을 비교하기 위하여, 분리막 및 환원전극의 특성이 다른 4개의 단위전지로 구성되어 있는 공기환원전극 미생물연료전지(4 air-cathode microbial fuel cell)를 회분식 운전하였다: A) PEM(Proton Exchange Membrane)-30% Wet proofing Carbon Cloth(WC), B) AEM(Anion Exchange Membrane-WC, C) CEM(Cation Exchange Membrane)-WC, D) PEM-No Wet proofing Carbon Cloth(NC). 분리막의 종류에 상관없이 최대전력밀도는 PEM-WC(510.9 $mW/m^2$), PEM-WC(522.1 $mW/m^2$), PEM-WC(504.8 $mW/m^2$)로 유사하였으나, 환원전극이 달랐던 PEM-NC는 218.3 $mW/m^2$으로 낮게 나왔다. 내부저항은 분리막의 종류에 상관없이 20.8-28.2 ${\Omega}$으로 유사하게 나타났다. PCR-DGGE, PCA, 종다양성 분석 결과, 부유미생물 군집은 시간이 경과함에 따라 다르게 나타났으며 기존 MFC 연구에서 보고되었던 uncultured bacteria가 관찰되었다. 한편, 부착미생물 군집은 분리막의 종류에 따라 큰 변화를 나타내지 않았지만, 환원전극의 특성에 따라 군집의 변화가 관찰되었다. 따라서, 기존의 이온교환막을 분리막으로 사용하는 공기환원전극 MFC에서는 환원전극의 선택도 중요한 것으로 나타났다.

고분자 전해질 연료전지용 유.무기 복합막의 연구개발동향 (Research Trend of Organic/Inorganic Composite Membrane for Polymer Electrolyte Membrane Fuel Cell)

  • 김득주;남상용
    • 멤브레인
    • /
    • 제22권3호
    • /
    • pp.155-170
    • /
    • 2012
  • 연료전지는 석유엔진과 비교하여 높은 전류밀도와 효율성, 그리고 친환경적이기 때문에 21세기 들어 대체 발전시스템으로서 각광받아왔다. 연료전지 시스템에서 고분자 전해질 막은 핵심부품으로써 현재 Nafion막이 연료전지시스템에서 사용 중이지만 높은 제조단가와 고온에서 낮은 전도도를 가지는 단점을 가지고 있다. 그러므로 많은 학자들이 낮은 제조단가, 높은 물리적 특성들을 달성하기 위한 연구를 진행하여 왔으며 연료전지의 상용화와 동시에 고성능의 연료전지의 개발을 위하여 많은 방법들이 개발되어 왔다. 그중, 유무기 복합막은 유기물과 무기물의 물성을 균일하게 조합할 수 있으므로 잠재성을 가지고 있는 제조방법이다. 본고에서는 다양한 무기물이 사용되어 제조된 유무기 복합막의 연구동향에 대하여 조사하였다.

전기 환원법을 이용한 고분자 전해질 연료전지용 PtRu 전극제조 (Preparation of PtRu catalysts Using Galvanostatic Pulse Electrodeposition on Nafion(Na+) bonded Carbon Layer for PEMFC)

  • 라영미;이재승;김하석
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.411-412
    • /
    • 2006
  • PEM(proton exchange membrane) fuel cell have been receiving considerable interest as power source because of high-energy efficiency. However by using reforming hydrogen gas, CO poisoning occur in anode. To improve CO tolerance PtRu catalysts were prepared by galvanostatic pulse electrodeposition. The composition(atomic ratio) of catalysts are controllable by using different concentrations of PtRu solutions. Also, the particle sizes of PtRu on carbon are similar to about $3.5{\sim}4nm$ regardless of concentration.

  • PDF

양자교환막을 이용하여 생산된 수소의 불순물 분석 (Hydrogen Impurities Analysis From Proton Exchange Membrane Hydrogen Production)

  • 이택홍;김태완;박태성;최운선;김홍열;이홍기
    • 한국수소및신에너지학회논문집
    • /
    • 제24권4호
    • /
    • pp.288-294
    • /
    • 2013
  • This gas analysis data come from the hydrogen which is produced by proton exchange membrane. Main impurities of hydrogen are methane, oxygen, nitrogen, carbon monoxide, and carbon dioxide. The concentration of impurities is ranged between 0.0191 to $315{\mu}mol/mol$ for each impurity. Methane contamination is believed from the electrode reaction between carbon doped electrode and produced hydrogen. Nitrogen contamination should take place the sampling process error, not from PEM hydrogen Production system.

복합막 기반의 미생물 연료전지 연구에 대한 총설 (Recent Advance in Microbial Fuel Cell based on Composite Membranes)

  • 김세민;라즈쿠마 파텔;김종학
    • 멤브레인
    • /
    • 제31권2호
    • /
    • pp.120-132
    • /
    • 2021
  • 미생물 연료전지(MFC)는 미생물의 촉매 반응을 이용하여 폐수 등 환경 오염물질을 처리함과 동시에 전기에너지를 생성하는 생물전기화학 장치다. 미생물 연료전지의 주요 성분 중 하나인 양이온 교환막(PEM)은 미생물 연료 전지의 성능에 결정적인 영향을 미치며, 현재 가장 많이 사용되고 있는 양성자교환막은 Nafion이다. Nafion은 우수한 성능을 가지고 있지만, 단가가 높고, 생물오염에 취약하며, 생분해가 불가능하다는 단점이 있다. 따라서 Nafion을 대체하기 위한 새로운 복합막을 개발하고자 하는 시도가 꾸준히 이루어졌다. 본 총설에서는 미생물 연료전지 분야에서 최근 개발된 복합막의 특징과 성능을 고찰하며, 특히 양성자교환막을 중점적으로 다룬다.