DOI QR코드

DOI QR Code

Recent Advance in Microbial Fuel Cell based on Composite Membranes

복합막 기반의 미생물 연료전지 연구에 대한 총설

  • Kim, Se Min (Life Science and Biotechnology Department (LSBT), Underwood Division (UD), Underwood International College, Yonsei University) ;
  • Patel, Rajkumar (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University) ;
  • Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 김세민 (연세대학교 언더우드학부 생명과학공학과) ;
  • 라즈쿠마 파텔 (연세대학교 융합과학공학부 에너지환경융합과) ;
  • 김종학 (연세대학교 화공생명공학과)
  • Received : 2021.04.24
  • Accepted : 2021.04.26
  • Published : 2021.04.30

Abstract

Microbial fuel cell (MFC) is a bio-electrochemical device that generates electricity by utilizing bacterial catalytic activity that degrades wastewater. Proton exchange membrane (PEM) is the core component of MFC that decides its performance, and Nafion membrane is the most widely used PEM. In spite of the excellent performance of Nafion, it has drawbacks such as high cost, biofouling issue, and non-biodegradable property. Recent studies in MFC attempted to synthetize the alternative membrane for Nafion by incorporating various polymers, sulfonating, fluorinating, and doping other chemicals. This review summarizes characteristics and performances of different composite membrane based MFCs, mostly focusing on PEM.

미생물 연료전지(MFC)는 미생물의 촉매 반응을 이용하여 폐수 등 환경 오염물질을 처리함과 동시에 전기에너지를 생성하는 생물전기화학 장치다. 미생물 연료전지의 주요 성분 중 하나인 양이온 교환막(PEM)은 미생물 연료 전지의 성능에 결정적인 영향을 미치며, 현재 가장 많이 사용되고 있는 양성자교환막은 Nafion이다. Nafion은 우수한 성능을 가지고 있지만, 단가가 높고, 생물오염에 취약하며, 생분해가 불가능하다는 단점이 있다. 따라서 Nafion을 대체하기 위한 새로운 복합막을 개발하고자 하는 시도가 꾸준히 이루어졌다. 본 총설에서는 미생물 연료전지 분야에서 최근 개발된 복합막의 특징과 성능을 고찰하며, 특히 양성자교환막을 중점적으로 다룬다.

Keywords

References

  1. T. Cai, L. Meng, G. Chen, Y. Xi, N. Jiang, J. Song, S. Zheng, Y. Liu, G. Zhen, and M. Huang, "Application of advanced anodes in microbial fuel cells for power generation: A review", Chemosphere, 248, 125985 (2020).
  2. A. ElMekawy, H. M. Hegab, D. Losic, C. P. Saint, and D. Pant, "Applications of graphene in microbial fuel cells: The gap between promise and reality", Renew. Sustain. Energy Rev., 72, 1389 (2017). https://doi.org/10.1016/j.rser.2016.10.044
  3. P. Bakonyi, L. Kook, G. Kumar, G. Toth, T. Rozsenberszki, D. D. Nguyen, S. W. Chang, G. Zhen, K. Belafi-Bako, and N. Nemestothy, "Architectural engineering of bioelectrochemical systems from the perspective of polymeric membrane separators: A comprehensive update on recent progress and future prospects", J. Membr. Sci., 564, 508 (2018). https://doi.org/10.1016/j.memsci.2018.07.051
  4. M. T. Noori, M. M. Ghangrekar, C. K. Mukherjee, and B. Min, "Biofouling effects on the performance of microbial fuel cells and recent advances in biotechnological and chemical strategies for mitigation", Biotechnol. Adv., 37, 107420 (2019). https://doi.org/10.1016/j.biotechadv.2019.107420
  5. L. Kook, P. Bakonyi, F. Harnisch, J. Kretzschmar, K. J. Chae, G. Zhen, G. Kumar, T. Rozsenberszki, G. Toth, N. Nemestothy, and K. Belafi-Bako, "Biofouling of membranes in microbial electrochemical technologies: Causes, characterization methods and mitigation strategies", Bioresour. Technol., 279, 327 (2019). https://doi.org/10.1016/j.biortech.2019.02.001
  6. P. Chatterjee, M. M. Ghangrekar, and D. Leech, "A brief review on recent advances in air-cathode microbial fuel cells", Environ. Eng. Manage. J., 17, 1531 (2018).
  7. M. Shabani, H. Younesi, M. Pontie, A. Rahimpour, M. Rahimnejad, and A. A. Zinatizadeh, "A critical review on recent proton exchange membranes applied in microbial fuel cells for renewable energy recovery", J. Clean. Prod., 264, 121446 (2020).
  8. P. Bakonyi, L. Kook, T. Rozsenberszki, G. Toth, K. Belafi-Bako, and N. Nemestothy, "Development and application of supported ionic liquid membranes in microbial fuel cell technology: A concise overview", Membr., 10, 16 (2020). https://doi.org/10.3390/membranes10010016
  9. A. A. Yaqoob, M. N. M. Ibrahim, and S. Rodriguez-Couto, "Development and modification of materials to build cost-effective anodes for microbial fuel cells (MFCs): An overview", Biochem. Eng. J., 164, 107779 (2020). https://doi.org/10.1016/j.bej.2020.107779
  10. S. Sung, B. Lee, O. Choi, and T. Kim, "Development of anion exchange membrane based on cross-linked poly(2,6-dimethyl-1,4-phenylene oxide) for alkaline fuel cell application", Membr J., 29, 173 (2019).
  11. H. Kang and C. Park, "Effect of Nafion chain length on proton transport as a binder material", Membr. J., 30, 57 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.1.57
  12. M. Mouhib, A. Antonucci, M. Reggente, A. Amirjani, A. J. Gillen, and A. A. Boghossian, "Enhancing bioelectricity generation in microbial fuel cells and biophotovoltaics using nanomaterials", Nano. Res., 12, 2184 (2019). https://doi.org/10.1007/s12274-019-2438-0
  13. J. Kim, S. Ryu, and S. Moon, "The fabrication of ion exchange membrane and its application to energy systems", Membr. J., 30, 79 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.2.79
  14. H. Chen, O. Simoska, K. Lim, M. Grattieri, M. Yuan, F. Dong, Y. S. Lee, K. Beaver, S. Weliwatte, E. M. Gaffney, and S. D. Minteer, "Fundamentals, applications, and future directions of bioelectrocatalysis", Chem. Rev., 120, 12903 (2020). https://doi.org/10.1021/acs.chemrev.0c00472
  15. L. P. Fan and S. Xue, "Overview on electricigens for microbial fuel cell", Open Biotechnol. J., 10, 398 (2016).
  16. P. Choudhury, U. S. P. Uday, N. Mahata, O. Nath Tiwari, R. N. Ray, T. K. Bandyopadhyay, and B. Bhunia, "Performance improvement of microbial fuel cells for waste water treatment along with value addition: A review on past achievements and recent perspectives", Renew. Sustain. Energy Rev., 79, 372 (2017). https://doi.org/10.1016/j.rser.2017.05.098
  17. P. Mukherjee and P. Saravanan, "Perspective view on materialistic, mechanistic and operating challenges of microbial fuel cell on commercialisation and their way ahead", ChemistrySelect., 4, 1601 (2019). https://doi.org/10.1002/slct.201802694
  18. K. Lee, J. Han, C. Ryu, and G. Hwang, "Preparation of an anion exchange membrane using the blending polymer of poly(ether sulfone) (PES) and poly(phenylene sulfide sulfone) (PPSS)", Membr. J., 29, 155 (2019).
  19. I. Gajda, J. Greenman, and I. A. Ieropoulos, "Recent advancements in real-world microbial fuel cell applications", Curr. Opin. Electrochem., 11, 78 (2018). https://doi.org/10.1016/j.coelec.2018.09.006
  20. A. A. Yaqoob, M. N. M. Ibrahim, M. Rafatullah, Y. S. Chua, A. Ahmad, and K. Umar, "Recent advances in anodes for microbial fuel cells: An overview", Mater., 13, 2078 (2020). https://doi.org/10.3390/ma13092078
  21. H. Ko, M. Kim, S. Nam, and K. Kim, "Research of cross-linked hydrocarbon based polymer electrolyte membranes for polymer electrolyte membrane fuel cell applications", Membr. J., 30, 395 (2020).
  22. P. Chatterjee, P. Dessi, M. Kokko, A. M. Lakaniemi, and P. Lens, "Selective enrichment of biocatalysts for bioelectrochemical systems: A critical review", Renew. Sustain. Energy Rev., 109, 10 (2019). https://doi.org/10.1016/j.rser.2019.04.012
  23. L. Kook, N. Nemestothy, K. Belafi-Bako, and P. Bakonyi, "Treatment of dark fermentative H2 production effluents by microbial fuel cells: A tutorial review on promising operational strategies and practices", Int. J. Hydrogen. Energy, 46, 5556 (2021). https://doi.org/10.1016/j.ijhydene.2020.11.084
  24. M. Azhar, J. Jaafar, M. Aziz, Y. Umar, M. A. J. Mazumder, and M. K. Nazal, "Mild sulfonated polyether ketone ether ketone ketone incorporated polysulfone membranes for microbial fuel cell application", J. Appl. Polym. Sci., e50216 (2020).
  25. M. J. Gonzalez-Pabon, F. Figueredo, D. C. Martinez-Casillas, and E. Corton, "Characterization of a new composite membrane for point of need paper-based micro-scale microbial fuel cell analytical devices", PLoS ONE, 14, e0222538 (2019). https://doi.org/10.1371/journal.pone.0222538
  26. A. G. Kumar, S. Saha, H. Komber, B. R. Tiwari, M. M. Ghangrekar, B. Voit, and S. Banerjee, "Trifluoromethyl and benzyl ether side groups containing novel sulfonated co-poly(ether imide)s: Application in microbial fuel cell", Eur. Polym. J., 118, 451 (2019). https://doi.org/10.1016/j.eurpolymj.2019.06.014
  27. A. G. Kumar, A. Singh, H. Komber, B. Voit, B. R. Tiwari, M. T. Noori, M. M. Ghangrekar, and S. Banerjee, "Novel sulfonated co-poly(ether imide)s containing trifluoromethyl, fluorenyl and hydroxyl groups for enhanced proton exchange membrane properties: Application in microbial fuel cell", ACS Appl. Mater. Interfaces, 10, 14803 (2018).
  28. A. A. O. Sirajudeen, M. S. M. Annuar, K. A. Ishak, H. Yusuf, and R. Subramaniam, "Innovative application of biopolymer composite as proton exchange membrane in microbial fuel cell utilizing real wastewater for electricity generation", J. Clean. Prod., 278, 123449 (2021). https://doi.org/10.1016/j.jclepro.2020.123449
  29. S. Ayyaru, and Y.-H. Ahn, "Enhanced performance of sulfonated GO in SPEEK proton-exchange membrane for microbial fuel-cell application", J. Environ. Eng., 147, 04020153 (2021). https://doi.org/10.1061/(asce)ee.1943-7870.0001848
  30. K. Ben Liew, J. X. Leong, W. R. W. Daud, A. Ahmad, J. J. Hwang, and W. Wu, "Incorporation of silver graphene oxide and graphene oxide nanoparticles in sulfonated polyether ether ketone membrane for power generation in microbial fuel cell", J. Power Sources, 449, 227490 (2020).
  31. X. Chen, Y. Li, X. Yuan, N. Li, W. He, and J. Liu, "Synergistic effect between poly(diallyldimethylammonium chloride) and reduced graphene oxide for high electrochemically active biofilm in microbial fuel cell", Electrochim Acta, 359, 136949 (2020). https://doi.org/10.1016/j.electacta.2020.136949
  32. S. Khilari, S. Pandit, M. M. Ghangrekar, D. Pradhan, and D. Das, "Graphene oxide-impregnated PVA-STA composite polymer electrolyte membrane separator for power generation in a single-chambered microbial fuel cell", Ind. Eng. Chem. Res., 52, 11597 (2013). https://doi.org/10.1021/ie4016045
  33. Y. Li, C. Cheng, S. Bai, L. Jing, Z. Zhao, and L. Liu, "The performance of Pd-rGO electro-deposited PVDF/carbon fiber cloth composite membrane in MBR/MFC coupled system", Chem. Eng. J., 365, 317 (2019). https://doi.org/10.1016/j.cej.2019.02.048
  34. M. Shabani, H. Younesi, A. Rahimpour, and M. Rahimnejad, "Upgrading the electrochemical performance of graphene oxide-blended sulfonated polyetheretherketone composite polymer electrolyte membrane for microbial fuel cell application", Biocatal. Agric. Biotechnol., 22, 101369 (2019).
  35. C. Li, L. Wang, X. Wang, C. Li, Q. Xu, and G. Li, "Fabrication of a SGO/PVDF-g-PSSA composite proton-exchange membrane and its enhanced performance in microbial fuel cells", J. Chem. Technol. Biotechnol., 94, 398 (2019).
  36. Q. Xu, L. Wang, C. Li, X. Wang, C. Li, and Y. Geng, "Study on improvement of the proton conductivity and anti-fouling of proton exchange membrane by doping SGO@SiO2 in microbial fuel cell applications", Int. J. Hydrogen. Energy, 44, 15322 (2019). https://doi.org/10.1016/j.ijhydene.2019.03.238
  37. H. Yusuf, M. S. M. Annuar, S. M. D. S. Mohamed, and R. Subramaniam, "Medium-chain-length poly3-hydroxyalkanoates-carbon nanotubes composite as proton exchange membrane in microbial fuel cell", Chem. Eng. Commun., 206, 731 (2019). https://doi.org/10.1080/00986445.2018.1521392
  38. P. Kumar and R. P. Bharti, "Nanocomposite polymer electrolyte membrane for high performance microbial fuel cell: Synthesis, characterization and application", J. Electrochem. Soc., 166, F1190 (2019). https://doi.org/10.1149/2.0671915jes
  39. C. Li, Y. Song, X. Wang, and Q. Zhang, "Synthesis, characterization and application of S-TiO2/PVDF-g-PSSA composite membrane for improved performance in MFCs", Fuel, 264, 116847 (2020).
  40. N. Garino, A. Lamberti, S. Stassi, M. Castellino, M. Fontana, I. Roppolo, A. Sacco, C. F. Pirri, and A. Chiappone, "Multifunctional flexible membranes based on reduced graphene oxide/tin dioxide nanocomposite and cellulose fibers", Electrochim. Acta, 306, 420 (2019). https://doi.org/10.1016/j.electacta.2019.02.095
  41. H. Nagar and V. Aniya, "Microporous material induced composite membrane with reduced oxygen leakage for MFC application", J. Environ. Chem. Eng., 8, 104117 (2020). https://doi.org/10.1016/j.jece.2020.104117
  42. G. Sowmya, S. Gowrishankar, and M. R. Prabhu, "Influence of phosphotungstic acid in sulfonated poly(ether ether ketone)/poly(amide imide) based proton conductive membranes and its impact on the electrochemical studies of microbial fuel cell application", Ionics, 26, 1841 (2020). https://doi.org/10.1007/s11581-019-03415-5
  43. C.-E. Zhao, J. Chen, Y. Ding, V. B. Wang, B. Bao, S. Kjelleberg, B. Cao, S. C. J. Loo, L. Wang, W. Huang, and Q. Zhang, "Chemically functionalized conjugated oligoelectrolyte nanoparticles for enhancement of current generation in microbial fuel cells", ACS Appl. Mater. Interfaces, 7, 14501 (2015).