Electricity Generation and Microbial Community Structure Variation Depending on Separator Types and Cathode Characteristics in Air-cathode MFC

공기환원전극 미생물연료전지에서 분리막 종류 및 환원전극 특성에 따른 전기발생 및 미생물 군집구조 변화

  • Yu, Jae-Cheul (School of Civil and Environmental Engineering, Pusan National University) ;
  • Lee, Chang-Yeol (School of Civil and Environmental Engineering, Pusan National University) ;
  • Kim, Sun-Ah (School of Civil and Environmental Engineering, Pusan National University) ;
  • Cho, Hae-In (School of Civil and Environmental Engineering, Pusan National University) ;
  • Cho, Sun-Ja (School of Civil and Environmental Engineering, Pusan National University) ;
  • Lee, Tae-Ho (School of Civil and Environmental Engineering, Pusan National University)
  • 유재철 (부산대학교 사회환경시스템공학부) ;
  • 이창열 (부산대학교 사회환경시스템공학부) ;
  • 김선아 (부산대학교 사회환경시스템공학부) ;
  • 조해인 (부산대학교 사회환경시스템공학부) ;
  • 조순자 (부산대학교 사회환경시스템공학부) ;
  • 이태호 (부산대학교 사회환경시스템공학부)
  • Received : 2009.12.17
  • Accepted : 2010.01.12
  • Published : 2010.02.28

Abstract

Air-cathode microbial fuel cell consisted of 4 unit cells were operated under batch condition and electricity generation and microbial community structure variation were investigated, depending on separator types and cathode characteristics: A) PEM(Proton Exchange Membrane)-30% Wet proofing Carbon Cloth(WC), B) AEM(Anion Exchange Membrane-WC, C) CEM(Cation Exchange Membrane)-WC, D) PEM-No Wet proofing Carbon Cloth(NC). Maximum power densities of PEM-WC, AEM-WC and CEM-WC were 510.9, 522.1 and 504.8 $mW/m^2$, respectively. But PEM-NC showed relatively lower maximum power density of 218.3 $mW/m^2$. And PEM-WC, AEM-WC and CEM-WC showed similar internal resistances(20.0-28.2 ${\Omega}$). PCRDGGE, PCA and diversity indices showed that uncultured bacteria which reported in previous MFC studies were detected in suspended growth bacteria and attached growth bacteria would be affected not by separator type but by cathode characteristic. Thus, cathode characteristic can be one of the critical factors for power generation in air-cathode MFC using PEM, AEM, and CEM as separator.

분리막의 종류 및 환원전극의 특성에 따른 전기발생량 및 미생물 군집을 비교하기 위하여, 분리막 및 환원전극의 특성이 다른 4개의 단위전지로 구성되어 있는 공기환원전극 미생물연료전지(4 air-cathode microbial fuel cell)를 회분식 운전하였다: A) PEM(Proton Exchange Membrane)-30% Wet proofing Carbon Cloth(WC), B) AEM(Anion Exchange Membrane-WC, C) CEM(Cation Exchange Membrane)-WC, D) PEM-No Wet proofing Carbon Cloth(NC). 분리막의 종류에 상관없이 최대전력밀도는 PEM-WC(510.9 $mW/m^2$), PEM-WC(522.1 $mW/m^2$), PEM-WC(504.8 $mW/m^2$)로 유사하였으나, 환원전극이 달랐던 PEM-NC는 218.3 $mW/m^2$으로 낮게 나왔다. 내부저항은 분리막의 종류에 상관없이 20.8-28.2 ${\Omega}$으로 유사하게 나타났다. PCR-DGGE, PCA, 종다양성 분석 결과, 부유미생물 군집은 시간이 경과함에 따라 다르게 나타났으며 기존 MFC 연구에서 보고되었던 uncultured bacteria가 관찰되었다. 한편, 부착미생물 군집은 분리막의 종류에 따라 큰 변화를 나타내지 않았지만, 환원전극의 특성에 따라 군집의 변화가 관찰되었다. 따라서, 기존의 이온교환막을 분리막으로 사용하는 공기환원전극 MFC에서는 환원전극의 선택도 중요한 것으로 나타났다.

Keywords

References

  1. 송영채, 우정희, 유규선, "미생물연료전지의 재료: 전극 및 분리막, 집전체", 대한환경공학회지, 31(9), 693-704(2009).
  2. 유재철, 이태호, "환원전극 DO 농도에 따른 단일 및 직렬연 결 미생물연료전지 전기발생량 평가", 대한환경공학회지, 31(4), 249-255(2009)
  3. 이태호, 유재철, 최수정, "생물환원전극을 활용한 미생물연 료전지", 대한환경공학회지, 31(8), 587-594(2009).
  4. Rozendal, R. A., Hamelers, H. V. M. and Buisman, C. J. N., "Effects of membrane cation transport on pH and microbial fuel cell performance", Environ. Sci. Technol., 40(17), 5206-5211 (2006). https://doi.org/10.1021/es060387r
  5. Chae K. J., Choi M., Ajayi F. F., Park W., Chang I. S. and Kim I. S., "Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells", Energy Fuels, 22, 169-176(2008). https://doi.org/10.1021/ef700308u
  6. Liu H. and Logan B. E., "Electricity generation using an aircathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane", Environ. Sci. Technol., 38(14), 4040-4046(2004). https://doi.org/10.1021/es0499344
  7. Shimoyama T., Komukai S., Yamazawa A., Ueno Y., Logan B. E. and Watanabe K., "Electricity generation from model organic wastewater in a cassette-electrode microbial fuel cell", Enivron. Biotechnol., 80, 325-330(2008)
  8. Kim J. R., Cheng S., Oh S. E. and Logan B. E., "Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells", Environ. Sci. Technol., 41(3), 1004-1009(2007). https://doi.org/10.1021/es062202m
  9. Zuo Y., Cheng S. and Logan B. E., "Ion exchange membrane cathodes for scalable microbial fuel cells", Environ. Sci. Technol., 42(18), 6967-6972(2008). https://doi.org/10.1021/es801055r
  10. Cheng S, Liu H, and Logan B. E., "Increased power and coulombic efficiency of single-chamber microbial fuel cells through an improved cathode structure". Electrochem. Communi., 8, 489-4949(2006). https://doi.org/10.1016/j.elecom.2006.01.010
  11. Margalef R., "Information theory in ecology", General Systems, 3, 36-71(1958).
  12. Simpson E. H., "Measurement of diversity", Nature, 163, 688(1949). https://doi.org/10.1038/163688a0
  13. Oh S. G., Min B. and Logan B. E., "Cathode performance as a factor in electricity generation in microbial fuel cells", Environ. Sci. Technol., 38(18), 4900-4904(2004). https://doi.org/10.1021/es049422p
  14. Logan B. E.," Microbial fuel cells". Wiley-Interscience(2007).
  15. Chae K. J., Choi M., J. W. Lee, K. Y. Lee. and Kim I. S., "Effect of different substrates on the performanace, bacterial diversity, and bacterial viability in the microbial fuel cells" Bioresour. Technol., 100, 3518-3525(2009). https://doi.org/10.1016/j.biortech.2009.02.065
  16. Borole A., Hamilton C., Vishnivetskaya T., Leak D. and Andras C., "Improving power production in acetate-fed microbial fuel cells via enrichment of exoelectrogenic organisms flow-through systems", Biochem. Eng. J., 48, 71-80(2009). https://doi.org/10.1016/j.bej.2009.08.008