• 제목/요약/키워드: PEC

Search Result 296, Processing Time 0.026 seconds

Photoelectrochemical cells based on oxide semiconductors

  • Yun, Yeong-Dae;Baek, Seung-Gi;Kim, Ju-Seong;Kim, Yeong-Bin;Jo, Hyeong-Gyun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.50.2-50.2
    • /
    • 2018
  • The demand for steady and dependable power sources is very high in the field of sustainable energy because of the limited amount of fossil fuels reserves. Among several sustainable alternatives, solar energy may be the most efficient solution because it constitutes the largest renewable energy source. So far, the only practical way to store such large amounts of energy has been to use a chemical energy carrier likewise a fuel. In various solar energy to power conversion systems, the photoelectrochemical (PEC) splitting of water into hydrogen and oxygen by the direct use of solar energy is an ideal process. It is a renewable method of hydrogen production integrated with solar energy absorption and water electrolysis using a single photoelectrode. Previous studies on photoelectrode films for PEC water splitting cells have been mainly focused on synthesizing oxide semiconductors with wide band gaps, such as TiO2(3.2eV), WO3(2.8eV), and Fe2O3(2.3eV). Unfortunately, these pristine oxide photoanodes without any catalysts have relatively low photocurrent densities because of the inherent limitation of insufficient visible light absorption due to the wide bandgap. Specifically, there is a tradeoff between high photocurrent and photoelectrochemical corrosion behavior, which is representative of figures of meritf or PEC materials.

  • PDF

Simulations of PEC columns with equivalent steel section under gravity loading

  • Begum, Mahbuba;Ghosh, Debaroti
    • Steel and Composite Structures
    • /
    • v.16 no.3
    • /
    • pp.305-323
    • /
    • 2014
  • This paper presents numerical simulations of partially encased composite columns (PEC) with equivalent steel sections. The composite section of PEC column consists of thin walled welded H- shaped steel section with transverse links provided at regular intervals between the flanges. Concrete is poured in the space between the flanges and the web plate. Most of the structural analysis and design software do not handle such composite members due to highly nonlinear material behavior of concrete as well as due to the complex interfacial behaviour of steel and concrete. In this paper an attempt has been made to replace the steel concrete composite section by an equivalent steel section which can be easily incorporated in the design and analysis software. The methodology used for the formulation of the equivalent steel section is described briefly in the paper. Finite element analysis is conducted using the equivalent steel section of partially encased composite columns tested under concentric gravity loading. The reference test columns are obtained from the literature, encompassing a variety of geometric and material properties. The finite element simulations of the composite columns with equivalent steel sections are found to predict the experimental behaviour of partially encased composite columns with very good accuracy.

Parametric study on eccentrically-loaded partially encased composite columns under major axis bending

  • Begum, Mahbuba;Driver, Robert G.;Elwi, Alaa E.
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1299-1319
    • /
    • 2015
  • This paper presents a detailed parametric study, conducted using finite element tools to cover a range of several geometric and material parameters, on the behaviour of thin-walled partially encased composite (PEC) columns. The PEC columns studied herein are composed of thin-walled built-up H-shaped steel sections with concrete infill cast between the flanges. Transverse links are provided between the opposing flanges to improve resistance to local buckling. The parametric study is confined to eccentrically-loaded columns subjected to major axis bending only. The parameters that were varied include the overall column slenderness ratio (L/d), load eccentricity ratio (e/d), link spacing-to-depth ratio (s/d), flange plate slenderness ratio (b/t) and concrete compressive strength ($f_{cu}$). The overall column slenderness ratio was chosen to be the primary variable with values of 5, 10 and 15. Other parameters were varied within each case of L/d ratio. The effects of the selected parameters on the behaviour of PEC columns were studied with respect to the failure mode, peak axial load, axial load versus average axial strain response, axial load versus lateral displacement response, moment versus lateral displacement behaviour and the axial load-moment interaction diagram. The results of the parametric study are presented in the paper and the influences of each of the parameters investigated are discussed.

Performance of bricks and brick masonry prism made using coal fly ash and coal bottom ash

  • Verma, Surender K.;Ashish, Deepankar K.;Singh, Joginder
    • Advances in concrete construction
    • /
    • v.4 no.4
    • /
    • pp.231-242
    • /
    • 2016
  • The major problem of a coal combustion-based power plant is that it creates large quantity of solid wastes. So, to achieve the gainful use of waste materials and to avoid other environmental problems, this study was undertaken. The quantity of coal ash by-products, particularly coal fly ash and coal bottom ash has been increasing from the coal power plants around the world. The other objective of this study was to explore the possibility of utilization of coal ash in the production of ash bricks. In 15 different mixes, Mix Designation M-1 to M-15, the varying percentages of lime and gypsum were used and sand was replaced with coal bottom ash. Further, it has been noticed that the water absorption and compressive strength of mix M-15 is 13.36% and 7.85 MPa which is better than the conventional bricks. The test results of this investigation show that the prism strength of coal ash masonry prisms was more than that of the conventional bricks.

ZnO Nanorod Array as an Efficient Photoanode for Photoelectrochemical Water Oxidation (광전기화학적 물 산화용 산화아연 나노막대 광양극의 합성 및 특성평가)

  • Park, Jong-Hyun;Kim, Hyojin
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.239-245
    • /
    • 2020
  • Synthesizing one-dimensional nanostructures of oxide semiconductors is a promising approach to fabricate highefficiency photoelectrodes for hydrogen production from photoelectrochemical (PEC) water splitting. In this work, vertically aligned zinc oxide (ZnO) nanorod arrays are successfully synthesized on fluorine-doped-tin-oxide (FTO) coated glass substrate via seed-mediated hydrothermal synthesis method with the use of a ZnO nanoparticle seed layer, which is formed by thermally oxidizing a sputtered Zn metal thin film. The structural, optical and PEC properties of the ZnO nanorod arrays synthesized at varying levels of Zn sputtering power are examined to reveal that the optimum ZnO nanorod array can be obtained at a sputtering power of 20 W. The photocurrent density and the optimal photocurrent conversion efficiency obtained for the optimum ZnO nanorod array photoanode are 0.13 mA/㎠ and 0.49 %, respectively, at a potential of 0.85 V vs. RHE. These results provide a promising avenue to fabricating earth-abundant ZnO-based photoanodes for PEC water oxidation using facile hydrothermal synthesis.

Cu2O Thin Film Photoelectrode Embedded with CuO Nanorods for Photoelectrochemical Water Oxidation

  • Kim, Soyoung;Kim, Hyojin
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.5
    • /
    • pp.258-264
    • /
    • 2019
  • Assembling heterostructures by combining dissimilar oxide semiconductors is a promising approach to enhance charge separation and transfer in photoelectrochemical (PEC) water splitting. In this work, the CuO nanorods array/$Cu_2O$ thin film bilayered heterostructure was successfully fabricated by a facile method that involved a direct electrodeposition of the $Cu_2O$ thin film onto the vertically oriented CuO nanorods array to serve as the photoelectrode for the PEC water oxidation. The resulting copper-oxide-based heterostructure photoelectrode exhibited an enhanced PEC performance compared to common copper-oxide-based photoelectrodes, indicating good charge separation and transfer efficiency due to the band structure realignment at the interface. The photocurrent density and the optimal photocurrent conversion efficiency obtained on the CuO nanorods/$Cu_2O$ thin film heterostructure were $0.59mA/cm^2$ and 1.10% at 1.06 V vs. RHE, respectively. These results provide a promising route to fabricating earth-abundant copper-oxide-based photoelectrode for visible-light-driven hydrogen generation using a facile, low-cost, and scalable approach of combining electrodeposition and hydrothermal synthesis.

An IE-FFT Algorithm to Analyze PEC Objects for MFIE Formulation

  • Seo, Seung Mo
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.1
    • /
    • pp.6-12
    • /
    • 2019
  • An IE-FFT algorithm is implemented and applied to the electromagnetic (EM) solution of perfect electric conducting (PEC) scattering problems. The solution of the method of moments (MoM), based on the magnetic field integral equation (MFIE), is obtained for PEC objects with closed surfaces. The IE-FFT algorithm uses a uniform Cartesian grid to apply a global fast Fourier transform (FFT), which leads to significantly reduce memory requirement and speed up CPU with an iterative solver. The IE-FFT algorithm utilizes two discretizations, one for the unknown induced surface current on the planar triangular patches of 3D arbitrary geometries and the other on a uniform Cartesian grid for interpolating the free-space Green's function. The uniform interpolation of the Green's functions allows for a global FFT for far-field interaction terms, and the near-field interaction terms should be adequately corrected. A 3D block-Toeplitz structure for the Lagrangian interpolation of the Green's function is proposed. The MFIE formulation with the IE-FFT algorithm, without the help of a preconditioner, is converged in certain iterations with a generalized minimal residual (GMRES) method. The complexity of the IE-FFT is found to be approximately $O(N^{1.5})$and $O(N^{1.5}logN)$ for memory requirements and CPU time, respectively.

Photoelectrochemical performance of anodized nanoporous iron oxide based on annealing conditions (양극산화로 제조된 다공성 나노구조 철 산화막의 열처리 조건에 따른 광전기화학적 성질)

  • Dongheon Jeong;JeongEun Yoo;Kiyoung Lee
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.4
    • /
    • pp.265-272
    • /
    • 2023
  • Photoelectrochemical (PEC) water splitting is one of the promising methods for hydrogen production by solar energy. Iron oxide has been effectively investigated as a photoelectrode material for PEC water splitting due to its intrinsic property such as short minority carrier diffusion length. However, iron oxide has a low PEC efficiency owing to a high recombination rate between photoexcited electrons and holes. In this study, we synthesized nanoporous structured iron oxide by anodization to overcome the drawbacks and to increase surface area. The anodized iron oxide was annealed in Ar atmosphere with different purging times. In conclusion, the highest current density of 0.032 mA/cm2 at 1.23 V vs. RHE was obtained with 60 s of pursing for iron oxide(Fe-60), which was 3 times higher in photocurrent density compared to iron oxide annealed with 600 s of pursing(Fe-600). The resistances and donor densities were also evaluated for all the anodized iron oxide by electrochemical impedance spectra and Mott-Schottky plot analysis.

Fabrication and Photoelectrochemical Properties of a Cu2O/CuO Heterojunction Photoelectrode for Hydrogen Production from Solar Water Splitting (태양광 물 분해를 통한 수소 생산용 Cu2O/CuO 이종접합 광전극의 제작 및 광전기화학적 특성)

  • Kim, Soyoung;Kim, Hyojin;Hong, Soon-Ku;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.604-610
    • /
    • 2016
  • We report on the fabrication and characterization of a novel $Cu_2O/CuO$ heterojunction structure with CuO nanorods embedded in $Cu_2O$ thin film as an efficient photocathode for photoelectrochemical (PEC) solar water splitting. A CuO nanorod array was first prepared on an indium-tin-oxide-coated glass substrate via a seed-mediated hydrothermal synthesis method; then, a $Cu_2O$ thin film was electrodeposited onto the CuO nanorod array to form an oxide semiconductor heterostructure. The crystalline phases and morphologies of the heterojunction materials were examined using X-ray diffraction and scanning electron microscopy, as well as Raman scattering. The PEC properties of the fabricated $Cu_2O/CuO$ heterojunction photocathode were evaluated by photocurrent conversion efficiency measurements under white light illumination. From the observed PEC current density versus voltage (J-V) behavior, the $Cu_2O/CuO$ photocathode was found to exhibit negligible dark current and high photocurrent density, e.g. $-1.05mA/cm^2$ at -0.6 V vs. $Hg/HgCl_2$ in $1mM\;Na_2SO_4$ electrolyte, revealing the effective operation of the oxide heterostructure. The photocurrent conversion efficiency of the $Cu_2O/CuO$ photocathode was estimated to be 1.27% at -0.6 V vs. $Hg/HgCl_2$. Moreover, the PEC current density versus time (J-T) profile measured at -0.5 V vs. $Hg/HgCl_2$ on the $Cu_2O/CuO$ photocathode indicated a 3-fold increase in the photocurrent density compared to that of a simple $Cu_2O$ thin film photocathode. The improved PEC performance was attributed to a certain synergistic effect of the bilayer heterostructure on the light absorption and electron-hole recombination processes.