References
- T. K. Lee, "Hydrogen Production by Water Splitting with Solar Energy," J. Energy Eng., 15 [2] 96-106 (2006).
- T. Hisatomi, J. Kubota, and K. Domen, "Recent Advances in Semiconductors for Photocatalytic and Photoelectrochemical Water Splitting," Chem. Soc. Rev., 43 [22] 7520-35 (2014). https://doi.org/10.1039/C3CS60378D
- P. V. Kamat, "Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Convers ion," J. Phys. Chem. C, 111 [7] 2834-60 (2007). https://doi.org/10.1021/jp066952u
- A. Fujishima and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode," Nature, 238 37-38 (1972). https://doi.org/10.1038/238037a0
- M. Bowker, "Sustainable Hydrogen Production by the Application of Ambient Temperature Photocatalysis," Green Chem., 13 [9] 2235-46 (2011). https://doi.org/10.1039/c1gc00022e
- T. Hisatomi, T. Minegishi, and K. Domen, "Kinetic Assessment and Numerical Modeling of Photocatalytic Water Splitting toward Efficient Solar Hydrogen Production," Bull. Chem. Soc. Jpn., 85 [6] 647-55 (2012). https://doi.org/10.1246/bcsj.20120058
-
A. J. Nozik, "Photoelectrolysis of Water Using Semiconducting
$TiO_2$ Crystals," Nature, 257 383-86 (1975). https://doi.org/10.1038/257383a0 - R. I. Bickley and V. Vishwanathan, "Photocatalytically Induced Fixation of Molecular Nitrogen by near UV Radiation," Nature, 280 306-08 (1979). https://doi.org/10.1038/280306a0
- J. H. Park, "광전기화학 셀을 이용한 수소 생산 기술," News & Information for Chemical Engineers, 27 [1] 67-71 (2009).
- J. Brillet, J. H. Yum, M. Cornuz, T. Hisatomi, R. Solarska, J. Augustynski, M. Graetzel, and K. Sivula, "Highly Efficient Water Splitting by a Dual-absorber Tandem Cell," Nat. Photon., 6 824-28 (2012). https://doi.org/10.1038/nphoton.2012.265
- X. Shi, K. Zhang, K. Shin, M. Ma, J. Kwon, I. T. Choi, J. K. Kim, H. K. Kim, D. H. Wang, and J. H. Park, "Unassisted Photoelectrochemical Water Splitting beyond 5.7% Solar-to-hydrogen Conversion Efficiency by a Wireless Monolithic Photoanode/dye-sensitised Solar Cell Tandem Device," Nano Energy, 13 182-91 (2015). https://doi.org/10.1016/j.nanoen.2015.02.018
-
M. W. Kanan and D. G. Nocera, "In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and
$CO_2^+$ ," Science, 321 1072-75 (2008). https://doi.org/10.1126/science.1162018 - F. F. Abdi, L. Han, A. H. M. Smets, M. Zeman, B. Dam, and R. Krol, "Efficient Solar Water Splitting by Enhanced Charge Separation in a Bismuth Vanadatesilicon Tandem Photoelectrode," Nat. Commun., 4 2195 (2013). https://doi.org/10.1038/ncomms3195
- L. Han, F. F. Abdi, R. Krol, R. Liu, Z. Huang, H. Lewerenz, B. Dam, M. Zeman, and A. H. M. Smets, "Efficient Water-Splitting Device Based on a Bismuth Vanadate Photoanode and Thin-Film Silicon Solar Cells," ChemSusChem, 7 [10] 2832-38 (2014). https://doi.org/10.1002/cssc.201402456
-
K. Shin, J. B. Yoo, and J. H. Park, "Photoelectrochemical Cell/dye-sensitized Solar Cell Tandem Water Splitting Systems with Transparent and Vertically Aligned Quantum Dot Sensitized
$TiO_2$ Nanorod Arrays," J. Power Sources, 225 263-68 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.036 - J. Luo, J. H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N. G. Park, S. D. Tilley, H. J. Fan, and M. Gratzel, "Water Photolysis at 12.3% Efficiency via Perovskite Photovoltaics and Earth-abundant catalysts," Sciecne, 345 [6204] 1593-96 (2014). https://doi.org/10.1126/science.1258307