광전기화학셀 (PEC)/태양전지 (Solar Cell) 적층(Tandem)을 이용한 물분해 수소 생산

  • 정명진 (성균관대 나노과학기술원) ;
  • 박종혁 (연세대학교 화공생명공학과)
  • Published : 2015.06.30

Abstract

Keywords

References

  1. T. K. Lee, "Hydrogen Production by Water Splitting with Solar Energy," J. Energy Eng., 15 [2] 96-106 (2006).
  2. T. Hisatomi, J. Kubota, and K. Domen, "Recent Advances in Semiconductors for Photocatalytic and Photoelectrochemical Water Splitting," Chem. Soc. Rev., 43 [22] 7520-35 (2014). https://doi.org/10.1039/C3CS60378D
  3. P. V. Kamat, "Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Convers ion," J. Phys. Chem. C, 111 [7] 2834-60 (2007). https://doi.org/10.1021/jp066952u
  4. A. Fujishima and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode," Nature, 238 37-38 (1972). https://doi.org/10.1038/238037a0
  5. M. Bowker, "Sustainable Hydrogen Production by the Application of Ambient Temperature Photocatalysis," Green Chem., 13 [9] 2235-46 (2011). https://doi.org/10.1039/c1gc00022e
  6. T. Hisatomi, T. Minegishi, and K. Domen, "Kinetic Assessment and Numerical Modeling of Photocatalytic Water Splitting toward Efficient Solar Hydrogen Production," Bull. Chem. Soc. Jpn., 85 [6] 647-55 (2012). https://doi.org/10.1246/bcsj.20120058
  7. A. J. Nozik, "Photoelectrolysis of Water Using Semiconducting $TiO_2$ Crystals," Nature, 257 383-86 (1975). https://doi.org/10.1038/257383a0
  8. R. I. Bickley and V. Vishwanathan, "Photocatalytically Induced Fixation of Molecular Nitrogen by near UV Radiation," Nature, 280 306-08 (1979). https://doi.org/10.1038/280306a0
  9. J. H. Park, "광전기화학 셀을 이용한 수소 생산 기술," News & Information for Chemical Engineers, 27 [1] 67-71 (2009).
  10. J. Brillet, J. H. Yum, M. Cornuz, T. Hisatomi, R. Solarska, J. Augustynski, M. Graetzel, and K. Sivula, "Highly Efficient Water Splitting by a Dual-absorber Tandem Cell," Nat. Photon., 6 824-28 (2012). https://doi.org/10.1038/nphoton.2012.265
  11. X. Shi, K. Zhang, K. Shin, M. Ma, J. Kwon, I. T. Choi, J. K. Kim, H. K. Kim, D. H. Wang, and J. H. Park, "Unassisted Photoelectrochemical Water Splitting beyond 5.7% Solar-to-hydrogen Conversion Efficiency by a Wireless Monolithic Photoanode/dye-sensitised Solar Cell Tandem Device," Nano Energy, 13 182-91 (2015). https://doi.org/10.1016/j.nanoen.2015.02.018
  12. M. W. Kanan and D. G. Nocera, "In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and $CO_2^+$," Science, 321 1072-75 (2008). https://doi.org/10.1126/science.1162018
  13. F. F. Abdi, L. Han, A. H. M. Smets, M. Zeman, B. Dam, and R. Krol, "Efficient Solar Water Splitting by Enhanced Charge Separation in a Bismuth Vanadatesilicon Tandem Photoelectrode," Nat. Commun., 4 2195 (2013). https://doi.org/10.1038/ncomms3195
  14. L. Han, F. F. Abdi, R. Krol, R. Liu, Z. Huang, H. Lewerenz, B. Dam, M. Zeman, and A. H. M. Smets, "Efficient Water-Splitting Device Based on a Bismuth Vanadate Photoanode and Thin-Film Silicon Solar Cells," ChemSusChem, 7 [10] 2832-38 (2014). https://doi.org/10.1002/cssc.201402456
  15. K. Shin, J. B. Yoo, and J. H. Park, "Photoelectrochemical Cell/dye-sensitized Solar Cell Tandem Water Splitting Systems with Transparent and Vertically Aligned Quantum Dot Sensitized $TiO_2$ Nanorod Arrays," J. Power Sources, 225 263-68 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.036
  16. J. Luo, J. H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N. G. Park, S. D. Tilley, H. J. Fan, and M. Gratzel, "Water Photolysis at 12.3% Efficiency via Perovskite Photovoltaics and Earth-abundant catalysts," Sciecne, 345 [6204] 1593-96 (2014). https://doi.org/10.1126/science.1258307