• Title/Summary/Keyword: PDZ Domain

Search Result 17, Processing Time 0.021 seconds

Cloning, Purification, and Structural Characterization by 1D 1H-NMR of the PDZ domain of the Shank3 protein (Shank3 PDZ 도메인의 동정, 정제 및 1차 NMR 구조분석)

  • Sung, Mee-Sook
    • Journal of Life Science
    • /
    • v.17 no.3 s.83
    • /
    • pp.345-349
    • /
    • 2007
  • We wished to create a set of small molecular weight PDZ domain ligands that may be used in functional studies on the proteins AF6, PSD-95 and Shank. As a starting point, the Shank3 PDZ domain was cloned, purified, and characterized the structure of Shank3 PDZ domain by 1D $^1H-NMR$. The chemical shift dispersion of the proton signals indicates that the purified Shank3 PDZ protein is very pure and globally well folded. Currently, we are working on improving the yield of the protein production for complete NMR structural analysis of the Shank3 PDZ domain.

A Machine Learning Based Method for the Prediction of G Protein-Coupled Receptor-Binding PDZ Domain Proteins

  • Eo, Hae-Seok;Kim, Sungmin;Koo, Hyeyoung;Kim, Won
    • Molecules and Cells
    • /
    • v.27 no.6
    • /
    • pp.629-634
    • /
    • 2009
  • G protein-coupled receptors (GPCRs) are part of multi-protein networks called 'receptosomes'. These GPCR interacting proteins (GIPs) in the receptosomes control the targeting, trafficking and signaling of GPCRs. PDZ domain proteins constitute the largest protein family among the GIPs, and the predominant function of the PDZ domain proteins is to assemble signaling pathway components into close proximity by recognition of the last four C-terminal amino acids of GPCRs. We present here a machine learning based approach for the identification of GPCR-binding PDZ domain proteins. In order to characterize the network of interactions between amino acid residues that contribute to the stability of the PDZ domain-ligand complex and to encode the complex into a feature vector, amino acid contact matrices and physicochemical distance matrix were constructed and adopted. This novel machine learning based method displayed high performance for the identification of PDZ domain-ligand interactions and allowed the identification of novel GPCR-PDZ domain protein interactions.

Crystal Structure of GRIP1 PDZ6-peptide complex reveals the structural basis for class II PDZ target recognition and PDZ domain-mediated multimerization

  • Im, Young-Jun;Park, Seong-Ho;Park, Seong-Hwan;Lee, Jun-Hyuck;Kang, Gil-Bu;Morgan Sheng;Kim, Eunjoon;Eom, Soo-Hyun
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.4-4
    • /
    • 2002
  • PDZ domains bind to short segments within target proteins in a sequence-specific fashion. GRIP/ABP family proteins contain six to seven PDZ domains and interact via its sixth PDZ domain (class Ⅱ) with the C-termini of various proteins, including liprin-α. In addition the PDZ456 domain mediates the formation of homo- and heteromultimers of GRIP proteins. To better understand the structural basis of peptide recognition by a class Ⅱ PDZ domain and DZ-mediated multimerization, we determined the crystal structures of the GRIPI PDZ6 domain, alone and in complex with a synthetic C-terminal octapeptide of human liprin-α, at resolutions of 1.5 Å and 1.8 Å, respectively. Remarkably, unlike other class Ⅱ PDZ domains, Ile736 at αB5 rather than conserved Leu732 at αB1 makes a direct hydrophobic contact with the side chain of the Tyr at the -2 position of the ligand. Moreover, the peptide-bound structure of PDZ6 shows a slight reorientation of helix αB, indicating that the second hydrophobic pocket undergoes a conformational adaptation to accommodate the bulkiness of the Tyr's side chain, and forms an antiparallel dimer through an interface located at a site distal to the peptide-binding groove. This configuration may enable formation of GRIP multimers and efficient clustering of GRIP-binding proteins.

  • PDF

Structural basis of Shank PDZ interaction with the C-terminal peptide of GKAP protein and the mode of PDZ domain dimerization

  • Im, Young-Jun;Lee, Jun-Hyuck;Park, Seong-Ho;Park, Seong-Hwan;Park, Soo-Jeong;Kang, Gil-Bu;Kim, Eunjoon;Eom, Soo-Hyun
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2003.05a
    • /
    • pp.14-14
    • /
    • 2003
  • We have crystallized and determined the structures o the Shank PDZ domain, alone and in complex with the synthetic C-terminal hexapeptide of GKAP protein at resolutions of 1.8Å and 2.5Å, respectively. The structure revealed the structural basis of the ligand recongition by Class I PDZ-ligand interaction. Moreover, dimeric structureof shank PDZ domain suggests that the βA strand is a common surface for dimerization of PDZ domains.

  • PDF

Parkin Interacts with the PDZ Domain of Multi-PDZ Domain Protein MUPP1 (Parkin과 Multi-PDZ Domain Protein (MUPP1) 단백질 간의 PDZ 결합)

  • Jang, Won Hee;Jeong, Young Joo;Choi, Sun Hee;Lee, Won Hee;Kim, Mooseong;Kim, Sang-Jin;Urm, Sang-Hwa;Moon, Il Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.24 no.8
    • /
    • pp.820-826
    • /
    • 2014
  • The localization to specific subcellular sites and the regulation of cell surface receptors and channels are crucial for proper functioning. Postsynaptic density-95/Disks large/Zonula occludens-1 (PDZ)-domain is involved in recognition of and interaction between various proteins, by which the localization and the regulation are mediated. Multi-PDZ domain protein 1 (MUPP1) contains 13 PDZ domains. MUPP1 serves a scaffolding function for structure proteins and signaling proteins, but the mechanism how MUPP1 is stabilized and signalized has not yet been elucidated. We used the yeast two-hybrid system to identify proteins that interact with PDZ domains of MUPP1. We found an interaction between MUPP1 and Parkin. Parkin is an E3 ubiquitin ligase. Loss-of-function mutations of Parkin gene are known to cause an autosomal recessive juvenile parkinsonism. Parkin bound to the $12^{th}$ PDZ domain, but not to other PDZ domains of MUPP1. The C-terminal end of Parkin has a type II PDZ-association motif, which was essential for the interaction with MUPP1 in the yeast two-hybrid assay. When co-expressed in HEK-293T cells, Parkin co-localized with MUPP1. When co-expressed with ubiquitin in HEK-293T cells, MUPP1 has been strongly ubiquitinated by Parkin. These findings collectively suggest that MUPP1 is a novel substrate of Parkin and its function or stability could be modulated by Parkin-mediated ubiquitination.

Muskelin Interacts with Multi-PDZ Domain Protein 1 (MUPP1) through the PDZ Domain (Muskelin과 multi-PDZ domain protein 1 (MUPP1) 단백질의 PDZ 도메인을 통한 결합)

  • Jang, Won Hee;Jeong, Young Joo;Choi, Sun Hee;Lee, Won Hee;Kim, Mooseong;Kim, Sang-Jin;Urm, Sang-Hwa;Moon, Il Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.25 no.5
    • /
    • pp.594-600
    • /
    • 2015
  • Protein-protein interactions have a critical role in the regulation of many cellular functions. Postsynaptic density-95/disks large/zonula occludens-1 (PDZ) domain is one of domains that mediate protein-protein interactions. PDZ domains typically bind to the specific motif at the carboxyl (C)-terminal end of partner proteins. Multi-PDZ domain protein 1 (MUPP1), which has 13 PDZ domains, serves a scaffolding function for structure proteins and signaling proteins, but the cellular function of MUPP1 has not been fully elucidated. We used the yeast two-hybrid system to identify proteins that interact with PDZ domains of MUPP1. We found an interaction between MUPP1 and muskelin. Muskelin was recently identified as a GABAA receptor (GABAAR) α1 subunit binding protein and known to have a role in receptor endocytosis and degradation. Muskelin bound to the 3rd PDZ domain, but not to other PDZ domains of MUPP1. The C-terminal end of muskelin was essential for the interaction with MUPP1 in the yeast two-hybrid assay. When co-expressed in HEK-293T cells, muskelin but not the C-terminal deleted muskelin was co-immunoprecipitated with MUPP1. In addition, MUPP1 co-localized with muskelin at the same subcellular region in cells. These findings collectively suggest that MUPP1 or its interacting proteins could modulate GABAAR trafficking and turnover through the interaction with muskelin.

Wdpcp, a Protein that Regulates Planar Cell Polarity, Interacts with Multi‐PDZ Domain Protein 1 (MUPP1) through a PDZ Interaction (Planar cell polarity 조절단백질 Wdpcp와 multi-PDZ domain protein 1 (MUPP1)의 PDZ 결합)

  • Jang, Won Hee;Jeong, Young Joo;Choi, Sun Hee;Yea, Sung Su;Lee, Won Hee;Kim, Mooseong;Kim, Sang-Jin;Urm, Sang-Hwa;Moon, Il Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.26 no.3
    • /
    • pp.282-288
    • /
    • 2016
  • Protein-protein interactions regulate the subcellular localization and function of receptors, enzymes, and cytoskeletal proteins. Proteins containing the postsynaptic density-95/disks large/zonula occludens-1 (PDZ) domain have potential to act as scaffolding proteins and play a pivotal role in various processes, such as synaptic plasticity, neural guidance, and development, as well as in the pathophysiology of many diseases. Multi-PDZ domain protein 1 (MUPP1), which has 13 PDZ domains, has a scaffolding function in the clustering of surface receptors, organization of signaling complexes, and coordination of cytoskeletal dynamics. However, the cellular function of MUPP1 has not been fully elucidated. In the present study, a yeast two-hybrid system was used to identify proteins that interacted with the N-terminal PDZ domain of MUPP1. The results revealed an interaction between MUPP1 and Wdpcp (formerly known as Fritz). Wdpcp was identified as a planar cell polarity (PCP) effector, which is known to have a role in collective cell migration and cilia formation. Wdpcp bound to the PDZ1 domain but not to other PDZ domains of MUPP1. The C-terminal end of Wdpcp was essential for the interaction with MUPP1 in the yeast two-hybrid assay. This interaction was further confirmed in a glutathione S-transferase (GST) pull-down assay. When coexpressed in HEK-293T cells, Wdpcp was coimmunoprecipitated with MUPP1. In addition, MUPP1 colocalized with Wdpcp at the same subcellular region in cells. Collectively, these results suggest that the MUPP1-Wdpcp interaction could modulate actin cytoskeleton dynamics and polarized cell migration.

PDZ Domain-containing Proteins at Autotypic Junctions in Myelinating Schwann Cells (수초화 슈반세포 autotypic 세포연접의 PDZ 도메인 보유 단백질)

  • Han, Seongjohn;Park, Hyeongbin;Hong, Soomin;Lee, Donghyun;Choi, Maro;Cho, Jeongmok;Urm, Sang-Hwa;Jang, Won Hee;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.25 no.1
    • /
    • pp.101-112
    • /
    • 2015
  • A type of cell junction that is formed between different parts within the same cell is called autotypic cell junction. Autotypic junction proteins form tight junctions found between membrane lamellae of a cell, especially in myelinating glial cells. Some of them have postsynaptic density-95/disks large/zonula occludens-1 (PDZ) domains, which interact with the carboxyl (C)-terminal PDZ-binding motif of other proteins. PDZ domains are protein-protein interaction modules that play a role in protein complex assembly. The PDZ domain, which is widespread in bacteria, plants, yeast, metazoans, and Drosophila, allows the assembly of large multi-protein complexes. The multi-protein complexes act in intracellular signal transduction, protein targeting, and membrane polarization. The identified PDZ domain-containing proteins located at autotypic junctions include zonula occludens-1 (ZO-1), ZO-2, pals-1-associated tight junction protein (PATJ), multi-PDZ domain proteins (MUPPs), membrane-associated guanylate kinase inverted 2 (MAGI2), and protease-activated receptor (PAR)-3. PAR-3 interacts with atypical protein kinase C and PAR-6, forming a ternary complex, which plays an important role in the regulation of cell polarity. MAGI2 interacts with ${\alpha}$-amino-3-hydroxyl-5-methyl-4-isoxazole propionate (AMPA) receptor at excitatory synapses. PATJ is detected in paranodal loops associated with claudin-1. On the other hand, MUPP1 is found in mesaxons and Schmidt-Lanterman incisures with claudin-5. ZO-1, ZO-2, and PAR-3 are found at all three sites. Different distributions of PDZ domain-containing proteins affect the development of autotypic junctions. In this review, we will describe PDZ domain-containing proteins at autotypic tight junctions in myelinating Schwann cells and their roles.

Crystal Structure of PDZ Domains, Protein Interaction Modules

  • Park, Seong-Ho;Im, Young-Jun;Soyoung Yang;Kim, Eunjoon;Eom, Soo-Hyun
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2001.06a
    • /
    • pp.21-21
    • /
    • 2001
  • PDZ domains are molecular-recognition elements that mediate protein-protein interactions. The PDZ domain was discovered originally as a common motif present in three structurally related proteins: PSD-95 (postsynaptic density protein), Dlg (discs-large protein) and ZQ-1 (zonula occludens-1). The PDZ domain is globular domain, containing about 80-100 amino acids, and a conserved motif with two alpha helices and six beta strands. Most of them bind selectively to the C-termini of the interacting proteins at the complexes of signaling molecules and membrane associated receptors.(omitted)

  • PDF

Cadms/SynCAMs/Necls/TSLCs Interact with Multi-PDZ Domain Protein MUPP1 (Cadms/SynCAMs/Necls/TSLCs와 multi-PDZ domain protein MUPP1 단백질의 결합)

  • Jang, Won Hee;Jeong, Young Joo;Choi, Sun Hee;Kim, Sang-Jin;Urm, Sang-Hwa;Moon, Il Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.24 no.12
    • /
    • pp.1276-1283
    • /
    • 2014
  • Cell adhesion molecules determine the cell-cell binding and the interactions between cells and extracellular signals. Cell-cell junctional complexes, which maintain the structural integrity of tissues, consist of more than 50 proteins including multi-PDZ domain protein 1 (MUPP1). MUPP1 contains 13 postsynaptic density-95/disks large/zonula occludens-1 (PDZ) domains and serves a scaffolding function for transmembrane proteins and cytoskeletal proteins or signaling proteins, but the mechanism how MUPP1 links and stabilizes the juxtamembrane proteins has not yet been elucidated. We used the yeast two-hybrid system to identify proteins that interact with PDZ domains of MUPP1. We found an interaction between MUPP1 and cell adhesion molecule 1 (Cadm1, also known as SynCAM1, Necl-2, or TSLC1). Cadm1 bound to the second PDZ domain of MUPP1. The carboxyl (C)-terminal end of Cadm1 has a type II PDZ-association motif (-Y-F-I) which was essential for the interaction with MUPP1 in the yeast two-hybrid assay. MUPP1 also bound to the C-terminal cytoplasmic tail region of other Cadm family members (Cadm2, Cadm3, and Cadm4). In addition, these protein-protein interactions were observed in the glutathione S-transferase (GST) pull-down assay and by co-immunoprecipitation. Anti-MUPP1 antibody co-immunoprecipitated Cadm1 and Cadm4 with MUPP1 from mouse brain extracts. These results suggest that MUPP1 could mediate interaction between Cadms and cytoskeletal proteins.