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A type of cell junction that is formed between different parts within the same cell is called autotypic 
cell junction. Autotypic junction proteins form tight junctions found between membrane lamellae of 
a cell, especially in myelinating glial cells. Some of them have postsynaptic density-95/disks large/ 
zonula occludens-1 (PDZ) domains, which interact with the carboxyl (C)-terminal PDZ-binding motif 
of other proteins. PDZ domains are protein-protein interaction modules that play a role in protein 
complex assembly. The PDZ domain, which is widespread in bacteria, plants, yeast, metazoans, and 
Drosophila, allows the assembly of large multi-protein complexes. The multi-protein complexes act in 
intracellular signal transduction, protein targeting, and membrane polarization. The identified PDZ 
domain-containing proteins located at autotypic junctions include zonula occludens-1 (ZO-1), ZO-2, 
pals-1-associated tight junction protein (PATJ), multi-PDZ domain proteins (MUPPs), membrane-asso-
ciated guanylate kinase inverted 2 (MAGI2), and protease-activated receptor (PAR)-3. PAR-3 interacts 
with atypical protein kinase C and PAR-6, forming a ternary complex, which plays an important role 
in the regulation of cell polarity. MAGI2 interacts with α-amino-3-hydroxyl-5-methyl-4-isoxazole propi-
onate (AMPA) receptor at excitatory synapses. PATJ is detected in paranodal loops associated with 
claudin-1. On the other hand, MUPP1 is found in mesaxons and Schmidt-Lanterman incisures with 
claudin-5. ZO-1, ZO-2, and PAR-3 are found at all three sites. Different distributions of PDZ do-
main-containing proteins affect the development of autotypic junctions. In this review, we will de-
scribe PDZ domain-containing proteins at autotypic tight junctions in myelinating Schwann cells and 
their roles.
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Introduction

There are innumerable cells in human body, and also a 

lots of cell junctions to communicate between the cells. In 

general, cell junctions are categorized into several types: gap 

junctions, adherens junctions, desmosomes, and tight junc-

tions [25]. But in the other aspect, cell junctions also can 

be divided by whether the junction structure ranges between 

two different adjacent cells or not. One of the interesting 

examples in latter view is autotypic cell junction. Autotypic 

cell junction is defined as a type of cell junction that is 

formed between two structural parts in the same cell [2]. 

These junctions are usually located in Schwann cells and 

myelinating glial cells, especially in non-compact myelin 

area like Schmidt-Lanterman incisures, paranodal loops, me-

saxons and the outer aspect of the nodal gap, formed be-

tween adjacent plasma membrane lamellae of the same cell 

(Fig. 1) [2, 24]. Like other types of cell junctions, there are 

several proteins to maintain functions of autotypic cell 

junctions. For example, autotypic adherens junctions have 

cytoplasmic proteins called catenins to connect the cal-

cium-sensitive adhesive molecule E-cadherin to the actin fil-

aments [24, 105]. 

One of the important subtypes of autotypic cell junctions 

in myelinating cells is autotypic tight junctions [2]. These 

junctions are thought to function as a linking part and per-

meability controller, setting the extracellular spaces apart 

from the intramyelinic space between plasma membrane la-

mellae [44, 77]. Despite decades of studies, the constituents 

that construct autotypic tight junction are still not clear. 

However, the composition of the junction can be inferred 
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Fig. 1. Expression of autotypic junction proteins in myelinating Schwann cell. The location of autotypic junctions in the 

Schmidt-Lanterman incisures, mesaxons, paranodal loop regions, and the outer collar of gap of node of Ranvier are marked 

with circles. A variety of autotypic junction proteins in this review article are listed with their detailed expression sites. 

The proteins that are detected only in the rodent nerves are put in parentheses, and the proteins that are detected only 

in the human nerves with asterisks. Note that the various kinds of proteins are enriched in non-compact myelin sites except 

for the outer side of nodal gap. There are also some differences with the kind of junction proteins between the locations 

of autotypic junctions, suggesting that junctions formed in distinct sites have differences with their unique structural 

compositions. 

not only according to the previous studies but also from the 

components of general type of tight junctions in epithelia 

and endothelia. Tight junctions have very intricate structure, 

consisting of a variety of functional molecules and several 

adhesive proteins: claudin family, one of the most important 

tight junction proteins with paracellular barrier function that 

controls the molecular flow of intercellular space [84, 90, 98]; 

occludin, the integral membrane protein establishing barrier 

function of tight junctions with four putative mem-

brane-spanning segments [27, 96]; peripheral membrane pro-

teins including zonula occludens-1 (ZO-1), ZO-2, and ZO-3, 

which are the connector proteins that link tight junction 

strands to cytoskeletal actin filaments [37, 81]; and junctional 

adhesion molecules (JAMs), the immunoglobulin super-

family proteins found at tight junctions that act as an adhe-

sive ligands for interacting with a variety of cell types [17, 

30, 66]. In addition, the proteins with postsynaptic den-

sity-95/disks large/zonula occludens-1 (PDZ) domain can 

also affect the function of adhesive tight junction proteins 

through PDZ domain-mediated interactions with specific 

PDZ-binding motif in the carboxyl (C)-terminal end of the 

interacting proteins [35]. The PDZ domain is also important 

for pathogenetic aspects because if there are some mutations 

on PDZ domain, some specific diseases can be occurred. For 

example, some of the mutations of PDZ domain can cause 

an autosomal recessive type of Charcot-Marie-Tooth disease 

(CMT), a demyelinating neuropathy characterized by chron-

ic motor weakness and sensory loss of distal extremities [33, 

65]. Furthermore, previous study proved that diverse types 

of cancers can occur by the mis-localization and mutation 

of the PDZ domain-containing proteins DLG1 and Scrrible, 

decreasing the adhesive strength of cell-cell junction sites fol-

lowed by increasing level of cytoplasmic proteins [20].

There were some previous studies about PDZ do-

main-containing proteins and autotypic tight junctions in-

dividually, but there were not many integrated studies about 

the interaction between them. In this review, we focused on 

the biochemical characteristics of the autotypic tight junction 

proteins and how PDZ domain-mediated interactions can 

make an influence on these protein functions.

PDZ domains

PDZ domains play an important role in protein-protein 

interactions and often recognize the C-terminal motif [86] 

or internal sequence motif of target proteins [34]. They are 

widespread through all eukaryotes and eubacteria [78]. For 
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Fig. 2. Structures of PDZ domain-containing proteins in autotypic tight junctions. MUPP1 and PATJ have similar domains. While 

MUPP1 has an L27 domain and 13 PDZ domains, PATJ has an L27 domain and 10 PDZ domains. PAR-3 has 3 PDZ domains 

and an aPKC binding domain which interacts with aPKC to form the PAR-3-aPKC-PAR-6 complex. AF-6 has one PDZ domain 

and two Ras associated domains which inhibit insulin induced promoter activities. ZO-1 and ZO-2 have 3 PDZ domains, 

one SH3 domain and one GK domain in common. They both directly interact with F-actin. Only ZO-1 has ZU5 domain. 

MAGI2 has 6 PDZ domains with 2 WW domains and one GK domain. 

example, there are 918 PDZ domain-containing proteins 

found in human and 771 PDZ domain-containing proteins 

found in mouse which are selected to regulate protein-pro-

tein interactions [88]. Furthermore, there are many kinds of 

PDZ domain-containing proteins such as multi-PDZ domain 

proteins (MUPPs), pals-1-associated tight junction protein 

(PATJ), and protease activated receptor (PAR)-3 (Fig. 2). 

They are linking the transmembrane proteins of tight junc-

tions to the underlying cytoskeleton [71]. Moreover, PDZ do-

main-containing proteins regulate the protein-protein inter-

actions, transport the micro-molecules which are take a role 

in signal cascade of the junctions and generate adhe-

sion-complexes such as receptors or channels [48].

Studies of the structures of PDZ domains using crystallo-

graphic and proteomic methods have provided the newest 

sight of PDZ domain-mediated interactions and their regu-

latory mechanism. They revealed that PDZ domains usually 

have 80-100 amino acid residues and consist of 5 to 6 β

-strands and 2 to 3 α-helices [21]. More specifically, canonical 

PDZ domains are made up of 6 β-strands and 2 α-helices, 

one of which is short and the other one is long [55, 56].  

In previous report, more than 200 structures of PDZ domains 

have been reported, which represents the specificity of rec-

ognition between PDZ domain-containing proteins and their 

ligands at the molecular level [16, 72]. One of the recent stud-

ies insisted discovered 16 structures of PDZ domains by 

their affinity to ligands, moreover, identified four additional 

structures by assembling existing database [19]. Most PDZ 

domains are found as isolating monomers, but some of PDZ 

domains form dimer. Remarkably, the dimer form does not 

interrupt the binding process of PDZ domains with their li-

gands because the specific peptides which are needed for 

conjugation still open [41]. Some PDZ domains are tandemly 

arranged with other PDZ domains and the tandem arrange-

ment is needed for proper folding of the PDZ domain-con-

taining proteins, which are considered to play important 

roles in supramodular formations [62].

Since the number of discovered PDZ domain-containing 

proteins is rapidly growing, some studies make the classi-

fication depending on features of amino acid residues on 

the specific position. The first class protein like postsynaptic 

density-95 (PSD-95), disks large (Dlg), ZO-1, which are the 

origin of their name, has serine/threonine residue at their 

(-2) position. The second class protein has the hydrophobic 

residues at the same position and α-B1 position of the PDZ 

domain. The third class protein, including nNOS, has a pref-

erence for negatively charged amino acid residue at the same 

position [16, 57]. Since PDZ domain-containing proteins me-
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Tablel 1. Localization of tight junction proteins in myelinated 

schwann cells in rodents  

Proteins
Schmidt-

Lanterman
incisures

Paranodal

loops
Mesaxons Reference

MUPP1

PATJ

ZO-1

ZO-2

Par-3

AF-6

JAM

Occludin

Claudin-1

Claudin-5

Pals-1

E-cadherin

+++

-

+++

+++

+++

-

-

-

-

+++

-

+++

-

+++

+++

+++

+++

-

-

-

+++

-

-

+++

+++

-

+++

+++

-

-

-

-

+++

-

-

+++

[77]

[77]

[77]

[77]

[60]

[77]

[47]

[74]

[77]

[77]

[45]

[47]

diate many biological processes, it is very important to un-

derstand the regulatory mechanism of their own. Interaction 

of PDZ domain-containing proteins with binding partners 

can be regulated by phosphorylation of the C-terminal 

PDZ-binding motif and influence the whole interaction be-

tween the molecules [43, 95]. Besides the phosphorylation, 

intramolecular disulfide bond formation of PDZ do-

main-containing proteins can affect the interaction with 

binding partners as well [61, 70].

ZO-1/-2/-3 

ZO-1, ZO-2 and ZO-3 are tight junction-associated pro-

teins that belong to the membrane-associated guanylate kin-

ase (MAGUK) family [31]. They interact with JAMs which 

are expressed on leukocytes and localize on epithelial or en-

dothelial cells functioning in cell-to-cell interaction [97]. JAM 

has two major roles: the first one is mediating inflammatory 

reaction between the leukocyte and endothelium, the second 

one is regulating cell polarity [92]. ZO-1 contains three PDZ 

domains, one Src homology (SH3), and one guanylate kin-

ase-like (GUK) domain and they make the connection with 

JAM-A PDZ domain-dependently in epithelial cells and di-

rectly associates with membrane and cytosolic proteins such 

as occludin, claudins, ZO-2 (Fig. 1, Fig. 2) [97]. Also, it binds 

to the F-actin through actin-binding region (ABR) [23]. ZO-1 

helps JAMs to recruit other JAMs to build macro-molecule 

complexes [81]. In the study about expression of ZO-1 and 

other JAMs, ZO-1 is localized widely in human myelinating 

Schwann cells [97]. It is strongly expressed in paranodal 

areas, Schmidt-Lanterman inceisures and mesaxon (Table 1) 

[2]. There are no ZOs at the node of Ranvier, neither are 

any other JAMs [80]. ZO-1 and JAMs’ functions in human 

neuroglial cells are still not clear. ZO-2 does not only interact 

with C-terminal domains, but also contact with nuclear pro-

teins and play a specific role in central dogma of proteins 

[93]. ZO-3 binds to PDZ7 of MUPP1 and PDZ6 of PATJ with 

its C-terminal amino acids (-A-T-D-L) connecting both of 

them (Fig. 3) [1]. But there are still some doubts about the 

existence and location of ZO-3 because it has no exact 

evidence. In addition, ZOs have a distinct C-terminal amino 

acids sequence which modulates these proteins act as scaf-

fold proteins and associate with transmembrane tight junc-

tion strands. It means ZOs take a part in the signaling pro-

duction between cytoskeleton and adaptor proteins and in-

fluence the gene expression [22]. In previous studies, it is 

revealed that ZOs are involved in intracellular signaling 

process as well as in gathering other proteins. ZO-1 is related 

with ZONAB/DbpA, which promotes proliferation of epi-

thelial cells. When cells meet and develop intercellular junc-

tions, ZO-1 is accumulated at junctions and recruits 

ZONAB/DbpA so that it is removed from the nucleus [5]. 

In contrast, ZO-2 actively shuttle between nucleus and tight 

junction. Nuclear localization and exporting signal are 

ZO-2’s functions [32, 42]. Transcription factors AP-1 and 

C/EBP, the DNA-binding protein SAF-B, and the p120ctn 

family member ARVCF interact with ZO-2 [7, 46]. So that 

more close research is required to clarify ZO-1 functions, 

especially in human neuroglial cells and their distinct 

distribution. There is specific gene to express ZO-2/-3 pro-

teins to function at the adherence junction. Interestingly, 

ZO-2 gene is very vital for mammalian survival so that ZO-2 

knock-out mice cannot make a full development and die on 

the gastrulation step. In contrast, ZO-3 is dispensable [100]. 

This study also suggests that ZOs has variable roles in the 

transcription and some of them play an irreplaceable role 

in the living.

MUPP1

MUPP1 has 13 PDZ domains and a Lin2/lin7 (L27) do-

main in its amino (N)-terminal region without any catalytic 

domains (Fig. 2). MUPP1 exists mainly in tight junctions and 

cell membranes of various organs [35]. There are signs of 

MUPP1 in heart, brain, placenta, skeletal muscles, liver, kid-

ney and pancreas [94]. PDZ domain binds to other molecules 

or proteins, so multiple PDZ domains of MUPP1 can interact 

with several partners. MUPP1 can serve as a scaffold protein 
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Fig. 3. Major multi-protein complexes at tight junctions. PATJ’s N-terminal MAGUK recruitment domain interacts with Pals-1’s 

L27N domain. ZO-2 and ZO-3 associate with ZO-1. Three ZOs can also bind to cell’s membrane directly. PAR-3-aPKC-PAR-6 

complex is involved in cell polarization. The activation of Cdc42 induces signal transduction through aPKC. PAR-3 binds 

to JAMs through first PDZ domain. This interaction anchors the complex at specific site.

to build larger protein complexes at the plasma membrane 

[23]. MUPP1 was originally identified as a protein that can 

bind to serotonin 5-hydroxytryptamine type 2 receptor 

(5HT-2A) in the brain [94]. Many other interacting proteins 

have been found through the studies, such as Pleckstrin ho-

mology (PH) domain-containing family A member 1 

(PLEKHA1) [50], SynGAP [53], C-Kit [64], transmembrane 

proteoglican NG2 [6], and claudin-5 in Schmitt-Lanterman 

incisure of myelinating Schwann cell (Fig. 1) [77]. Claudin-1 

and JAM1, which form tight junction, interact with PDZ10 

and PDZ3 of MUPP1 respectively [1, 35]. Olfactory receptors 

in the olfactory nerve bind to PDZ1 and PDZ2 of MUPP1 

[15]. Many proteins and molecules that interact with MUPP1 

have been discovered, but considering the number of PDZ 

domains, it is thought to have more binding partners. In 

mutation of MUPP1, it can cause severe congenital hydro-

cephalus, and can influence in alcohol withdrawal [3, 69]. 

These cliniclal symptoms are all related to the nervous sys-

tem, so it is thought that MUPP1 plays crucial role in the 

nervous system.

PATJ

PATJ is a paralogue of MUPP1; it has 10 PDZ domains 

and an L27 domain (Fig. 2) [83]. Like MUPP1, it is localized 

at tight junctions of epithelial cells [58, 83]. MUPP1 and PATJ 

have similar domain in common and both bind to claudin-1 

[35, 58, 82]. In recent study, over-expression of MUPP1 re-

duces endogenous PATJ from tight junctions, and over-ex-

pression of PATJ does the opposite, respectively. This result 

can speculate that PATJ and MUPP1 have some overlapping 

molecular mechanisms [1]. PATJ binds to tight junctions that 

directly interact with claudin-1, and interacts with occludin 

through ZO-3 [67, 82]. Change in the expression of PATJ 

disrupts the tight junction-specific localization of ZO-1, 

ZO-3, and occludin, signifying that PATJ plays a role in sta-

bilization of tight junctions [58, 68]. PATJ also affects Crumbs 

(CRB) complexes through Pals-1, which means that PATJ 

makes the link between the lateral and apical part of tight 

junction [68, 82].

PAR-3

PAR-3-PAR-6-aPKC (atypical protein kinase C) complex 

is composed of 3 proteins and plays a key role in regulation 

of cellular polarity in cell junction (Fig. 3). This protein com-

plex has been highly conserved throughout biologic evolu-

tion process [52, 76]. PAR-3, an important part of this protein 
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complex, is associated with JAM-A at tight junctions. This 

protein interacts not only with JAMs, but also with other 

proteins, such as LIM-kinase 2 (LIMK2), T lymphoma in-

vasion and metastasis 1 (Tiam1) [11, 12]. The correlation is 

related to the phosphorylation of PAR-3, which is regulated 

by aPKC [73]. PAR-3 maintains stable status when it binds 

with JAM-A directly, which implies that both proteins dis-

tribute to connection between cells [4]. The PAR-3-PAR- 

6-aPKC complex takes an important role for membrane po-

larity in tight junctions [76]. It means that if there are muta-

tions in all of the three components, the structure of tight 

junction will be altered [28, 73, 91, 104]. When PAR-3 was 

degraded at PAR-3-PAR-6-aPKC complex, there is re-

tardation at early stage of apical membrane domain develop-

ment and the structure of tight junction was changed. It sug-

gests that PAR-3 mutation makes the apical membrane do-

main hard to localize at cell contact region [39]. Taken to-

gether with the fact that proteins such as JAM-A bind with 

PAR-3, it can be thought that not only PAR-3-PAR-6-aPKC 

complex but also partners of PAR-3 can take important parts 

in forming polarization. For example the signal transduction 

of this multi-protein complex is induced by E-cadherin 

mediated activation of Cdc42 or Rac1 [49, 75] which possibly 

activates aPKC through interaction between PAR-6 and 

Cdc42/Rac1 [104].

MAGI2

Membrane associated guanylate kinase inverted 2 (MAGI2), 

also called synaptic scaffolding molecule (S-SCAM) is a scaf-

folding proteins at tight junctions. MAGI2 contain nine po-

tential parts which play an important role in protein-to-pro-

tein interaction, including six PDZ domains, two WW do-

mains and a guanylate kinase-like domain (Fig. 2) [38, 97]. 

MAGI is inverted form of MAGUK family, which is wide-

spread both synapses and epithelial cells, however, MAGI2 

is specific in human neuronal system and interacts with 

AMPA receptors (AMPARs) at excitatory synapses [13]. It 

interacts with the C-terminus of AMPAR regulating proteins 

(TARPs) such as stargazin in brain and maintains the syn-

aptic plasticity by trafficking of the ionotropic glutamate re-

ceptors and regulating the functions of AMPAR [14]. These 

molecules of great capacity interact with phosphatase and 

tensin homolog (PTEN) [99], dendrite arborization and syn-

apse maturation 1 (Dasm1) [87], hyperpolariztion-activated 

cation channels [44], β-1 adrenergic receptors [101] and even 

NMDA receptors as well [9]. Since AMPARs mediate the 

fast signal transmission in human central nervous system, 

MAGI2 is concerned to be essential in memory and learning. 

Recently report, MAGI2 gene plays a vital role in survival 

of neonatal mice because it contribute to the completely de-

velopment of podocyte morphology [40]. MAGI2 is sig-

nificant to maintain the slit diaphragm of glomerular filtra-

tion barrier and its absence could cause a critical problem 

like anuria [40]. MAGI2 is contributed some severe diseases 

to attack human’s bodies. It is getting increased the risk of 

schizophrenia in the MAGI2 gene knock-out mice in-

dividuals because the cognitive functions and MAGI2 gene 

are conducted elaborately [63]. Another present study 

showed that mRNA of MAGI2 gene which is expressed by 

which binding with phosphatase and tensin homolog 

(PTEN), a tumor suppressor is statistically meaningful 

down-regulated in the prostate cancer cell line [99]. This 

means that it will be easy to detect prostate cancer earlier 

if we would develop some procedure related MAGI2 gene. 

In addition, this interaction also contributes to the lung ad-

enocarcinoma depending on the epithelial mesenchymal 

transition (EMT) [51]. The up-to-date study mentioned the 

MAGI2 targeting microRNA could inhibit the EMT action 

and drug resistance making PTEN portions unstable, so that 

it would apply to the new therapeutic methods of advanced 

lung cancer.

AF-6  

AF-6 is a multidomain protein that scaffold between cell 

membrane proteins and actin of cytoskeleton. AF-6 contains 

N-terminal region which has two Ras-binding domains, 

C-terminal region and a PDZ domain (Fig. 2) [10]. AF-6 is 

expressed in the brain. AF-6 plays essential role in plasticity 

of dendritic spine [36] and the maintenance of adherens 

junction in the midbrain [102]. AF-6 links JAM-A with 

PDZ-mediated interaction [18]. And, it is also associated 

with ZO-1 [8, 59]. The connection between AF-6 and ZO-1 

is mediated by competitive binding reaction of Ras and 

Rap-1 (small GTPases) at the same binding site of AF-6 [103]. 

According to previous studies, ZO-1 plays a role as a linker 

between AF-6 and JAM-A [26], and their association is appa-

rent at early stage of contact formation of cell rather than 

at advanced stage with clearly polarized cells of well devel-

oped tight junctions [18]. When microinjected into epithelial 

cells, JAM-A is detected where AF-6 is presented. This result 

suggests that there is no clear functional relationship be-

tween JAM-A and AF-6, but they may work together at cell 
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contact sites [18]. On the other hand, JAM-A is not always 

found at where ZO-1 is abundant. Therefore, it can be 

thought that ZO-1 and AF-6 plays a different role for local-

ization of JAM-A [18]. AF-6 is also associated with MUPP1. 

In neuronal tissue, especially in the brain, AF-6 and MUPP1 

are detected together using immunofluorescence assay [59]. 

This result suggests that there is a relationship between 

AF-6, MUPP1, and gap junction protein Cx36. Cx36 forms 

electrical synapses which regulate inhibition and experi-

ence-dependent plasticity through γ-aminobutyric acid (GABA) 

release [79].

CASK  

Calcium/calmodulin-dependent serine protein kinase 

(CASK) is a peripheral plasma membrane protein, also 

known as a homolog of LIN2. It is expressed by far the great-

est in brain relative to kidney, lung and liver [89]; micro-

scopically in nucleus, cytoplasm and cell membrane [29]. 

CASK is widely found in tight junctions and belongs to the 

MAGUK family like ZOs and Pals-1, which takes part in 

forming intercellular junctions [54, 85]. Several domains are 

found in this protein; 1 guanylate kinase like domain, 2 L27 

domains, 1 PDZ domain and 1 SH3 domain (Fig. 2). The 

multiple domains in CASK are able to interact with numer-

ous proteins. For instance, Two L27 domains interact with 

DLG1 and LIN7 respectively [85], and the protein kinase do-

main with FER-CIP4 homology (FCH) domain and double 

SH3 domains containing proteins 2 (FCHSD2). CASK plays 

an important role in neural development through interaction 

with transcription factor T-box brain 1 (TBR1) [54], after-

wards stabilizing the integrity of synapses of the brain [29].

Summary and perspective

Several autotypic junction proteins contribute to autotypic 

tight junction formation. Autotypic junction proteins which 

contain PDZ domains play an important role in conducting 

intracellular signals. Intrinsic interactions between specific 

proteins are tightly regulated in human tissue, as seen in 

strong conservation throughout evolution. For instance, 

PAR3-aPKC-PAR6 complex which is essential for cell polar-

ization has been found from Drosophilia sp. to vertebrates 

[52, 76]. ZOs work with JAMs in intercelluar contact sites 

to recruit and form the basis of tight junction. ZO-1 promotes 

aggregation of JAMs to form large molecular complexes. 

AF-6 is one good partner for ZO-1, as the connection be-

tween AF-6 and JAM-A is facilitated by ZO-1 [26]. ZO-3, 

on the other hand, binds to other PDZ domain-containing 

proteins such as MUPP1 and PATJ [77]. MUPP1 is able to 

interact with numerous proteins like ZOs on account of its 

multiple PDZ domains [23]. PATJ is detected in paranodal 

loops whereas MUPP1 is found in mesaxons and Schmidt- 

Lanterman incisures. ZO-1 is seen in paranodal areas, 

Schmidt-Lanterman incisures and mesaxons but not in node 

of Ranvier [2]. It is not so difficult to speculate that various 

types of proteins are fulfilling unique functions according 

to their distribution.

An interesting challenge has emerged to elucidate clear 

physiological functions of these versatile proteins at auto-

typic junctions. Thus, future studies of the molecular basis 

and distribution for autotypic junction proteins will extend 

our understanding of the intracellular signal transduction, 

cell polarization, and autotypic tight junctions in myelinat-

ing Schwann cells and the consequences of defects in those 

processes for neurodegenerative diseases and potentially 

other age related diseases.
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초록：수초화 슈반세포 autotypic 세포연접의 PDZ 도메인 보유 단백질

한성존1․박형빈1․최마로1․조정목1․홍수민1․이동현1․엄상화2․장원희3․석대현3*

(1인제대학교 의과대학 의학과, 2 인제대학교 의과대학 예방의학교실, 3인제대학교 의과대학 생화학교실)

자가밀착연접 단백질들은 세포, 특히 수초화된 신경교세포막의 층상구조 사이에 존재하는 밀착연접에 존재한

다. 그들 중 일부는 다른 단백질의 C-말단의 PDZ 결합 모티프에 붙는 postsynaptic density-95/Disks large/ 

Zonula occludens-1 (PDZ) 도메인을 가진다. PDZ domain은 박테리아, 식물, 세균, 후생동물, Drosophila에 존재하

여 거대한 단백복합체를 형성할 수 있게 해준다. 이러한 단백복합체들은 세포 내 신호전달, 단백질 표적화, 그리고 

세포막 극화 작용을 한다. ZO-1, ZO-2, AF-6, PATJ, MUPP1, PAR-3는 자가밀착연접에 존재한다고 확인되었다. 

PAR-3는 atypical protein kinase C와 PAR-6와 반응하여 세포의 극성 형성에 중요한 역할을 하는 3차원 단백질복

합체를 형성하는데 이는 Caenorhabditis elegans와 Drosophila 종에서 척추동물에까지 보존되었다. MAGI2는 흥분성 

시냅스에서 α-amino-3-hydroxyl-5-methyl-4-isoxazole propionate (AMPA) 수용체와 반응한다. PATJ는 claudin-1

과 함께 마디곁 루프에서 발견되는 반면, MUPP1은 claudin-5와 함께 축삭사이막과 Schmidt-Lanterman 절흔에서 

찾을 수 있다. ZO-1, ZO-2 그리고 PAR-3의 경우에는 세 장소 모두에서 발견된다. PDZ 도메인을 보유한 단백질들

의 서로 다른 분포는 자가밀착연접의 발생에 영향을 준다. 이 총설에서는 수초화된 슈반 세포의 자가밀착연접에 

존재하는 PDZ 도메인을 가진 단백질들과 그들의 기능을 알아볼 것이다.


