Browse > Article
http://dx.doi.org/10.5352/JLS.2015.25.1.101

PDZ Domain-containing Proteins at Autotypic Junctions in Myelinating Schwann Cells  

Han, Seongjohn (Medical Course, Inje University College of Medicine)
Park, Hyeongbin (Medical Course, Inje University College of Medicine)
Hong, Soomin (Medical Course, Inje University College of Medicine)
Lee, Donghyun (Medical Course, Inje University College of Medicine)
Choi, Maro (Medical Course, Inje University College of Medicine)
Cho, Jeongmok (Medical Course, Inje University College of Medicine)
Urm, Sang-Hwa (Department of Preventive Medicine, Inje University College of Medicine)
Jang, Won Hee (Department of Biochemistry and u-HARC, Inje University College of Medicine)
Seog, Dae-Hyun (Department of Biochemistry and u-HARC, Inje University College of Medicine)
Publication Information
Journal of Life Science / v.25, no.1, 2015 , pp. 101-112 More about this Journal
Abstract
A type of cell junction that is formed between different parts within the same cell is called autotypic cell junction. Autotypic junction proteins form tight junctions found between membrane lamellae of a cell, especially in myelinating glial cells. Some of them have postsynaptic density-95/disks large/zonula occludens-1 (PDZ) domains, which interact with the carboxyl (C)-terminal PDZ-binding motif of other proteins. PDZ domains are protein-protein interaction modules that play a role in protein complex assembly. The PDZ domain, which is widespread in bacteria, plants, yeast, metazoans, and Drosophila, allows the assembly of large multi-protein complexes. The multi-protein complexes act in intracellular signal transduction, protein targeting, and membrane polarization. The identified PDZ domain-containing proteins located at autotypic junctions include zonula occludens-1 (ZO-1), ZO-2, pals-1-associated tight junction protein (PATJ), multi-PDZ domain proteins (MUPPs), membrane-associated guanylate kinase inverted 2 (MAGI2), and protease-activated receptor (PAR)-3. PAR-3 interacts with atypical protein kinase C and PAR-6, forming a ternary complex, which plays an important role in the regulation of cell polarity. MAGI2 interacts with ${\alpha}$-amino-3-hydroxyl-5-methyl-4-isoxazole propionate (AMPA) receptor at excitatory synapses. PATJ is detected in paranodal loops associated with claudin-1. On the other hand, MUPP1 is found in mesaxons and Schmidt-Lanterman incisures with claudin-5. ZO-1, ZO-2, and PAR-3 are found at all three sites. Different distributions of PDZ domain-containing proteins affect the development of autotypic junctions. In this review, we will describe PDZ domain-containing proteins at autotypic tight junctions in myelinating Schwann cells and their roles.
Keywords
Autotypic junction; cell junctions; PDZ domain; scaffold protein; schwann cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fanning, A. S., Ma, T. Y. and Anderson, J. M. 2002. Isolation and functional characterization of the actin binding region in the tight junction protein ZO-1. FASEB J. 16, 1835-1837.   DOI
2 Fannon, A. M., Sherman, D. L., Gragerova, G. I., Brophy, P. J., Friedrich, V. L. and Colman, D. R. 1995. Novel E-cadherin-mediated adhesion in peripheral nerve: Schwann cell architecture is stabilized by autotypic adherens junctions. J. Cell Biol. 129, 189-202.   DOI
3 Chen, Q., Niu, X., Xu, Y., Wu, J. and Shi, Y. 2007. Solution structure and backbone dynamics of the AF-6 PDZ domain/Bcr peptide complex. Protein Sci. 16, 1053-1062.   DOI
4 Chen, X. and Macara, I. G. 2006. Par-3 mediates the inhibition of LIM kinase 2 to regulate cofilin phosphorylation and tight junction assembly. J. Cell Biol. 172, 671-678.   DOI
5 Chen, X. and Macara, I. G. 2005. Par-3 controls tight junction assembly through the Rac exchange factor Tiam1. Nat. Cell Biol. 7, 262-269.   DOI
6 Danielson, E., Zhang, N., Metallo, J., Kaleka, K., Shin, S. M., Gerges, N. and Lee, S. H. 2012. S-SCAM/MAGI-2 is an essential synaptic scaffolding molecule for the GluA2-containing maintenance pool of AMPA receptors. J. Neurosci. 32, 6967-6980.   DOI
7 Ebnet, K., Aurrand Lions, M., Kuhn, A., Kiefer, F., Butz, S., Zander, K., Meyer zu Brickwedde, M. K., Suzuki, A., Imhof, B. and Vestweber, D. 2003. The junctional adhesion molecule (JAM) family members JAM-2 and JAM-3 associate with the cell polarity protein PAR-3: a possible role for JAMs in endothelial cell polarity. J. Cell Sci. 116, 3879-3891.   DOI
8 Deng, F., Price, M. G., Davis, C. F., Mori, M. and Burgess, D. L. 2006. Stargazin and other transmembrane AMPA receptor regulating proteins interact with synaptic scaffolding protein MAGI-2 in brain. J. Neurosci. 26, 7875-7884.   DOI
9 Xu, J., Paquet, M., Lau, A. G., Wood, J. D., Ross, C. A. and Hall, R. A. 2001. beta 1-adrenergic receptor association with the synaptic scaffolding protein membrane-associated guanylate kinase inverted-2 (MAGI-2). Differential regulation of receptor internalization by MAGI-2 and PSD-95. J. Biol. Chem. 276, 41310-41317.   DOI
10 Yamanaka, T., Horikoshi, Y., Suzuki, A., Sugiyama, Y., Kitamura, K., Maniwa, R., Nagai, Y., Yamashita, A., Hirose, T., Ishikawa, H. and Ohno, S. 2001. PAR-6 regulates aPKC activity in a novel way and mediates cell-cell contact-induced formation of the epithelial junctional complex. Genes Cells 6, 721-731.   DOI
11 Young, P., Boussadia, O., Berger, P., Leone, D., Charnay, P., Kemler, R. and Suter, U. 2002. E-cadherin is required for the correct formation of autotypic adherens junctions of the outer mesaxon but not for the integrity of myelinated fibers of peripheral nerves. Mol. Cell Neurosci. 21, 341-351.   DOI
12 Van Itallie, C. and J, Anderson. 2006. Claudins and epithelial paracellular transport. Annu. Rev. Physiol. 68, 403-429.   DOI
13 Wu, X., Hepner, K., Castelino-Prabhu, S., Do, D., Kaye, M. B., Yuan, X. J., Wood, J., Ross, C., Sawyers, C. L. and Whang, Y. E. 2000. Evidence for regulation of the PTEN tumor suppressor by a membrane-localized multi-PDZ domain containing scaffold protein MAGI-2. Proc. Natl. Acad. Sci. USA 97, 4233-4238.   DOI
14 Al-Dosari, M. S., Al-Owain, M., Tulbah, M., Kurdi, W., Adly, N., Al-Hemidan, A., Masoodi, T. A., Albash, B. and Alkuraya, F, S. 2013. Mutation in MPDZ causes severe congenital hydrocephalus. J. Med. Genet. 50, 54-58.   DOI
15 Dooley, R., Baumgart, S., Rasche, S., Hatt, H. and Neuhaus, E. M. 2009. Olfactory receptor signaling is regulated by the post-synaptic density 95, Drosophila discs large, zona-occludens 1 (PDZ) scaffold multi-PDZ domain protein 1. FEBS J. 276, 7279-7290.   DOI   ScienceOn
16 Doyle, D. A., Lee, A., Lewis, J., Kim, E., Sheng, M. and MacKinnon, R. 1996. Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by PDZ. Cell 85, 1067-1076.   DOI
17 Alanne, M., Pummi, K., Heape, A. M., Grènman, R., Peltonen, J. and Peltonen, S. 2009. Tight junction proteins in human Schwann cell autotypic junctions. J. Histochem. Cytochem. 57, 523-529.   DOI
18 Assemat, E., Bazellieres, E., Pallesi-Pocachard, E., Le Bivic, A. and Massey-Harroche, D. 2008. Polarity complex proteins. Biochim. Biophys. Acta 1778, 614-630.   DOI
19 Balda, M. S. and Matter, K. 2000. The tight junction protein ZO-1 and an interacting transcription factor regulate ErbB-2 expression. EMBO J. 19, 2024-2033.   DOI
20 Barritt, D. S., Pearn, M. T., Zisch, A. H., Lee, S. S., Javier, R. T., Pasquale, E. B. and Stallcup, W. B. 2000. The multi-PDZ domain protein MUPP1 is a cytoplasmic ligand for the membrane-spanning proteoglycan NG2. J. Cell Biochem. 79, 213-224.   DOI
21 Betanzos, A., Huerta, M., Lopez-Bayghen, E., Azuara, E., Amerena, J. and Gonzalez-Mariscal, L. 2004. The tight junction protein ZO-2 associates with Jun, Fos and C/EBP transcription factors in epithelial cells. Exp. Cell Res. 292, 51-66.   DOI
22 Yamamoto, T., Harada, N., Kano, K., Taya, S., Canaani, E., Matsuura, Y., Mizoguchi, A., Ide, C. and Kaibuchi, K. 1997. The Ras target AF-6 interacts with ZO-1 and serves as a peripheral component of tight junctions in epithelial cells. J. Cell Biol. 139, 785-795.   DOI
23 Xu, J., Kausalya, P. J., Phua, D. C., Ali, S. M., Hossain, Z. and Hunziker, W. 2008. Early embryonic lethality of mice lacking ZO-2, but Not ZO-3, reveals critical and nonredundant roles for individual zonula occludens proteins in mammalian development. Mol. Cell Biol. 28, 1669-1678.   DOI
24 Yamamoto, H., Maruo, T., Majima, T., Ishizaki, H., Tanaka-Okamoto, M., Miyoshi, J., Mandai, K. and Takai, Y. 2013. Genetic deletion of afadin causes hydrocephalus by destruction of adherens junctions in radial glial and ependymal cells in the midbrain. PLoS One 8, e80356.   DOI
25 Tokuda, S., Higashi, T. and Furuse, M. 2014. ZO-1 knockout by TALEN-mediated gene targeting in MDCK cells: involvement of ZO-1 in the regulation of cytoskeleton and cell shape. PLoS One 9, e104994.   DOI
26 Suzuki, T., Yoshinaga, N. and Tanabe, S. 2011. Interleukin-6(IL-6) regulates claudin-2 expression and tight junction permeability in intestinal epithelium. J. Biol. Chem. 286, 31263-31271.   DOI
27 Suzuki, A., Yamanaka, T., Hirose, T., Manabe, N., Mizuno, K., Shimizu, M., Akimoto, K., Izumi, Y., Ohnishi, T. and Ohno, S. 2001. Atypical protein kinase C is involved in the evolutionarily conserved par protein complex and plays a critical role in establishing epithelia-specific junctional structures. J. Cell Biol. 152, 1183-1196.   DOI
28 Traweger, A., Toepfer, S., Wagner, R. N., Zweimueller-Mayer, J., Gehwolf, R., Lehner, C., Tempfer, H., Krizbai, I., Wilhelm, I., Bauer, H. C. and Bauer, H. 2013. Beyond cell-cell adhesion: Emerging roles of the tight junction scaffold ZO-2. Tissue Barriers 1, e25039.   DOI
29 Chen, B. S., Braud, S., Badger 2nd, J. D., Isaac, J. T. and Roche, K. W. 2006. Regulation of NR1/NR2C N-methyl-D-aspartate(NMDA) receptors by phosphorylation. J. Biol. Chem. 281, 16583-16590.   DOI
30 Boettner, B., Govek, E. E., Cross, J. and Van Aelst, L. 2000. The junctional multidomain protein AF-6 is a binding partner of the Rap1A GTPase and associates with the actin cytoskeletal regulator profilin. Proc. Natl. Acad. Sci. USA 97, 9064- 9069.   DOI
31 Adachi, M., Hamazaki, Y., Kobayashi, Y., Itoh, M., Tsukita, S., Furuse, M. and Tsukita, S. 2009. Similar and distinct properties of MUPP1 and Patj, two homologous PDZ domain-containing tight-junction proteins. Mol. Cell Biol. 29, 2372-2389.   DOI   ScienceOn
32 Van Itallie, C., Fanning, A., Holmes, J. and Anderson, J. 2010. Occludin is required for cytokine-induced regulation of tight junction barriers. J. Cell Sci. 123, 2844-2852.   DOI
33 Ullmer, C., Schmuck, K., Figge, A. and Lubbert, H. 1998. Cloning and characterization of MUPP1, a novel PDZ domain protein. FEBS Lett. 424, 63-68.   DOI   ScienceOn
34 van den Berk, L. C., Landi, E., Harmsen, E., Dente, L. and Hendriks, W. J. 2005. Redox-regulated affinity of the third PDZ domain in the phosphotyrosine phosphatase PTP-BL for cysteine-containing target peptides. FEBS J. 272, 3306-3316.   DOI
35 Roh, M. H., Liu, C. J., Laurinec, S. and Margolis, B. 2002. The carboxyl terminus of zona occludens-3 binds and recruits a mammalian homologue of discs lost to tight junctions. J. Biol. Chem. 277, 27501-27509.   DOI
36 Van Itallie, C. M. and Anderson, J. M. 2014. Architecture of tight junctions and principles of molecular composition. Semin Cell Dev. Biol. 36, 157-165.   DOI
37 Rodgers, L., Beam, M. T., Anderson, J. and Fanning, A. 2013. Epithelial barrier assembly requires coordinated activity of multiple domains of the tight junction protein ZO-1. J. Cell Sci. 126, 1565-1575.   DOI
38 Roh, M. H., Makarova, O., Liu, C. J., Shin, K., Lee, S., Laurinec, S., Goyal, M., Wiggins, R. and Margolis, B. 2002. The Maguk protein, Pals1, functions as an adapter, linking mammalian homologues of Crumbs and Discs Lost. J. Cell Biol. 157, 161-172.   DOI
39 Rosenthal, R., Milatz, S., Krug, S., Oelrich, B., Schulzke, J., Amasheh, S., Günzel, D. and Fromm, M. 2010. Claudin-2, a component of the tight junction, forms a paracellular water channel. J. Cell Sci. 123, 1913-21.   DOI
40 Sanford, J. L., Mays, T. A. and Rafael-Fortney, J. A. 2004. CASK and Dlg form a PDZ protein complex at the mammalian neuromuscular junction. Muscle Nerve. 30, 164-171.   DOI
41 Saras, J. and Heldin, C. H. 1996. PDZ domains bind carboxy-terminal sequences of target proteins. Trends Biochem. Sci. 21, 455-458.   DOI
42 Nakagawa, M., Fukata, M., Yamaga, M., Itoh, N. and Kaibuchi, K. 2001. Recruitment and activation of Rac1 by the formation of E-cadherin-mediated cell-cell adhesion sites. J. Cell Sci. 114, 1829-1838.
43 Shi, S. H., Cheng, T., Jan, L. Y. and Jan, Y. N. 2004. The immunoglobulin family member dendrite arborization and synapse maturation 1 (Dasm1) controls excitatory synapse maturation. Proc. Natl. Acad. Sci. USA 101, 13346-13351.   DOI
44 Spaller, M. R. 2006. Act globally, think locally: systems biology addresses the PDZ domain. ACS Chem. Biol. 1, 207-210.   DOI
45 Stevenson, D., Laverty, H. G., Wenwieser, S., Douglas, M. and Wilson, J. B. 2000. Mapping and expression analysis of the human CASK gene. Mamm. Genome 11, 934-937.   DOI
46 Ohno, S. 2001. Intercellular junctions and cellular polarity: the PAR-aPKC complex, a conserved core cassette playing fundamental roles in cell polarity. Curr. Opin. Cell Biol. 13, 641-648.   DOI
47 Poliak, S., Matlis, S., Ullmer, C., Scherer, S. and Peles, E. 2002. Distinct claudins and associated PDZ proteins form different autotypic tight junctions in myelinating Schwann cells. J. Cell Biol. 159, 361-372.   DOI
48 Ponting, C. P. 1997. Evidence for PDZ domains in bacteria, yeast, and plants. Protein Sci. 6, 464-468.
49 Pummi, K. P., Heape, A. M., Grenman, R. A., Peltonen, J. T. and Peltonen, S. A. 2004. Tight junction proteins ZO-1, occludin, and claudins in developing and adult human perineurium. J. Histochem. Cytochem. 52, 1037-1046.   DOI
50 Postma, F., Liu, C. H., Dietsche, C., Khan, M., Lee, H. K., Paul, D. and Kanold, P. O. 2011. Electrical synapses formed by connexin36 regulate inhibition- and experience-dependent plasticity. Proc. Natl. Acad. Sci. USA 108, 13770-13775.   DOI
51 Martìn Padura, I., Lostaglio, S., Schneemann, M., Williams, L., Romano, M., Fruscella, P., Panzeri, C., Stoppacciaro, A., Ruco, L., Villa, A., Simmons, D. and Dejana, E. 1998. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J. Cell Biol. 142, 117-127.   DOI
52 Nagai-Tamai, Y., Mizuno, K., Hirose, T., Suzuki, A. and Ohno, S. 2002. Regulated protein-protein interaction between aPKC and PAR-3 plays an essential role in the polarization of epithelial cells. Genes Cells 7, 1161-1171.   DOI
53 Nagaoka, T., Oyamada, M., Okajima, S. and Takamatsu, T. 1999. Differential expression of gap junction proteins connexin 26,32, and 43 in normal and crush-injured rat sciatic nerves. Close relationship between connexin43 and occludin in the perineurium. J. Histochem. Cytochem. 47, 937-948.   DOI
54 Marchesi, C., Milani, M., Morbin, M., Cesani, M., Lauria, G., Scaioli, V., Piccolo, G., Fabrizi, G. M., Cavallaro, T., Taroni, F. and Pareyson, D. 2010. Four novel cases of periaxin-related neuropathy and review of the literature. Neurology 75, 1830-1838.   DOI
55 Matter, K. and Balda, M. S. 1999. Occludin and the functions of tight junctions. Int. Rev. Cytol. 186, 117-146.
56 Mitic, L. L. and Anderson, J. M. 1998. Molecular architecture of tight junctions. Annu. Rev. Physiol. 60, 121-142.   DOI
57 Michel, D., Arsanto, J. P., Massey-Harroche, D., Beclin, C., Wijnholds, J. and Le Bivic, A. 2005. PATJ connects and stabilizes apical and lateral components of tight junctions in human intestinal cells. J. Cell Sci. 118, 4049-4057.   DOI
58 Lee, H. J. and Zheng, J. J. 2010. PDZ domains and their binding partners: structure, specificity, and modification. Cell Commun Signal 8, 8:8. doi: 10.1186/1478-811X-8-8.   DOI
59 Mishra, P., Socolich, M., Wall, M. A., Graves, J., Wang, Z. and Ranganathan, R. 2007. Dynamic scaffolding in a G protein-coupled signaling system. Cell 131, 80-92.   DOI
60 Morais Cabral, J. H., Petosa, C., Sutcliffe, M. J., Raza, S., Byron, O., Poy, F., Marfatia, S. M., Chishti, A. H. and Liddington, R. C. 1996. Crystal structure of a PDZ domain. Nature 382, 649-652.   DOI
61 Lemmers, C., Medina, E., Delgrossi, M. H., Michel, D., Arsanto, J. P. and Le Bivic, A. 2002. hINADl/PATJ, a homolog of discs lost, interacts with crumbs and localizes to tight junctions in human epithelial cells. J. Biol. Chem. 277, 25408-25415.   DOI
62 Li, X., Lynn, D. B. and Nagy, J. I. 2012. The effector and scaffolding proteins AF6 and MUPP1 interact with connexin36 and localize at gap junctions that form electrical synapses in rodent brain. Eur. J. Neurosci. 35, 166-181.   DOI
63 Lin, D., Edwards, A. S., Fawcett, J. P., Mbamalu, G., Scott, J. D. and Pawson, T. 2000. A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nat. Cell Biol. 2, 540-547.   DOI
64 Mahdian, R., Nodouzi, V., Asgari, M., Rezaie, M., Alizadeh, J., Yousefi, B., Shahrokh, H., Abolhasani, M. and Nowroozi, M. 2014. Expression profile of MAGI2 gene as a novel biomarker in combination with major deregulated genes in prostate cancer. Mol. Biol. Rep. 41, 6125-6131.   DOI
65 Liu, W., Wen, W., Wei, Z., Yu, J., Ye, F., Liu, C. H., Hardie, R. C. and Zhang, M. 2011. The INAD scaffold is a dynamic, redox-regulated modulator of signaling in the Drosophila eye. Cell 145, 1088-1101.   DOI   ScienceOn
66 Kim, S. H., Li, Z. and Sacks, D. B. 2000. E-cadherin-mediated cell-cell attachment activates Cdc42. J. Biol. Chem. 275, 36999-37005.   DOI
67 Long, J., Wei, Z., Feng, W., Yu, C., Zhao, Y. and Zhang, M. 2008. Supramodular nature of GRIP1 revealed by the structure of its PDZ12 tandem in complex with the carboxyl tail of Fras1. J. Mol. Biol. 375, 1457-1468.   DOI
68 Mancini, A., Koch, A., Stefan, M. Niemann, H. and Tamura, T. 2000. The direct association of the multiple PDZ domain containing proteins (MUPP-1) with the human c-Kit C-terminus is regulated by tyrosine kinase activity. FEBS Lett. 482, 54-58.   DOI
69 Kimber, W. A., Trinkle-Mulcahy, L., Cheung, P. C., Deak, M., Marsden, L. J., Kieloch, A., Watt, S., Javier, R. T., Gray, A., Downes, C. P., Lucocq, J. M. and Alessi, D. R. 2002. Evidence that the tandem-pleckstrin-homology-domain-containing protein TAPP1 interacts with Ptd(3,4)P2 and the multi-PDZ-domain-containing protein MUPP1 in vivo. Biochem. J. 361, 525-536.   DOI
70 Kitamura, K., Seike, M., Okano, T., Matsuda, K., Miyanaga, A., Mizutani, H., Noro, R., Minegishi, Y., Kubota, K. and Gemma, A. 2014. MiR-134/487b/655 cluster regulates TGF-beta-induced epithelial-mesenchymal transition and drug resistance to gefitinib by targeting MAGI2 in lung adenocarcinoma cells. Mol. Cancer Ther. 13, 444-453.   DOI
71 Lee, H. J., Wang, N. X, Shao, Y. and Zheng, J. J. 2009. Identification of tripeptides recognized by the PDZ domain of Disheveled. Bioorg. Med. Chem. 17, 1701-1708.   DOI
72 Knust, E. and Bossinger, O. 2002. Composition and formation of intercellular junctions in epithelial cells. Science 298, 1955-1959.   DOI
73 Lee, H. J., Wang, N. X., Shi, D. L. and Zheng, J. J. 2009. Sulindac inhibits canonical Wnt signaling by blocking the PDZ domain of the protein Dishevelled. Angew. Chem. Int. Ed. Engl. 48, 6448-6452.   DOI
74 LaConte, L. and Mukherjee, K. 2013. Structural constraints and functional divergences in CASK evolution. Biochem. Soc. Trans. 41, 1017-1022.   DOI
75 Im, Y. J., Lee, S., Park, S., Rho, G., Kang, E., Kim, E. J. and S., Eom. 2003. Crystal structure of the Shank PDZ-ligand complex reveals a class I PDZ interaction and a novel PDZ-PDZ dimerization. J. Biol. Chem. 278, 48099-480104.   DOI
76 Jaramillo, B. E., Ponce, A, Moreno, J., Betanzos, A., Huerta, M., Lopez-Bayghen, E. and Gonzalez-Mariscal, L. 2004. Characterization of the tight junction protein ZO-2 localized at the nucleus of epithelial cells. Exp. Cell Res. 297, 247-258.   DOI
77 Jelen, F., Oleksy, A., Smietana, K. and Otlewski, J. 2003. PDZ domains-common players in the cell signaling. Acta Biochem. Pol. 50, 985-1017.
78 Jöns, T., Wittschieber, D., Beyer, A., Meier, C., Brune, A., Thomzig, A., Ahnert-Hilger, G. and Veh, R. 2006. K+-ATP-channel-related protein complexes: potential transducers in the regulation of epithelial tight junction permeability. J. Cell Sci. 119, 3087-3097.   DOI
79 Kim, E. and Sheng, M. 2004. PDZ domain proteins of synapses. Nat. Rev. Neurosci. 5, 771-781.   DOI
80 Kamberov, E., Makarova, O., Roh, M., Liu, A., Karnak, D., Straight, S., and Margolis, B. 2000. Molecular cloning and characterization of Pals, proteins associated with mLin-7. J. Biol. Chem. 275, 11425-11431.   DOI
81 Kausalya, P. J., Phua, D. C. and Hunziker, W. 2004. Association of ARVCF with zonula occludens (ZO)-1 and ZO-2: binding to PDZ-domain proteins and cell-cell adhesion regulate plasma membrane and nuclear localization of ARVCF. Mol. Biol. Cell 15, 5503-5515.   DOI
82 Kikuchi, S., Ninomiya, T., Tatsumi, H., Sawada, N. and Kojima, T. 2010. Tricellulin is expressed in autotypic tight junctions of peripheral myelinating Schwann cells. J. Histochem. Cytochem. 58, 1067-1073.   DOI
83 Guillaume, J. L., Daulat, A. M., Maurice, P., Levoye, A., Migaud, M., Brydon, L., Malpaux, B., Borg-Capra, C. and Jockers, R. 2008. The PDZ protein mupp1 promotes Gi coupling and signaling of the Mt1 melatonin receptor. J. Biol. Chem. 283, 16762-16771.   DOI   ScienceOn
84 Hamazaki, Y., Itoh, M., Sasaki, H., Furuse, M. and Tsukita, S. 2002. Multi-PDZ domain protein 1 (MUPP1) is concentrated at tight junctions through its possible interaction with claudin-1 and junctional adhesion molecule. J. Biol. Chem. 277, 455-461.   DOI   ScienceOn
85 Haskin, J., Szargel, R., Shani, V., Mekies, L. N., Rott, R., Lim, G. G., Lim, K. L., Bandopadhyay, R., Wolosker, H. and Engelender, S. 2013. AF-6 is a positive modulator of the PINK1/parkin pathway and is deficient in Parkinson’s disease. Hum. Mol. Genet. 22, 2083-2096.   DOI
86 Haskins, J., Gu, L., Wittchen, E. S., Hibbard, J. and Stevenson, B. R. 1998. ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J. Cell Biol. 141, 199-208.   DOI
87 Furuse, M., Hirase, T., Itoh, M., Nagafuchi, A., Yonemura, S. and Tsukita, S. 1993. Occludin: a novel integral membrane protein localizing at tight junctions. J. Cell Biol. 123, 1777-1788.   DOI
88 Fukuhara, A., Irie, K., Nakanishi, H., Takekuni, K., Kawakatsu, T., Ikeda, W., Yamada, A., Katata, T., Honda, T., Sato, T., Shimizu, K., Ozaki, H., Horiuchi, H., Kita, T. and Takai, Y. 2002. Involvement of nectin in the localization of junctional adhesion molecule at tight junctions. Oncogene 21, 7642-7655.   DOI
89 Horikoshi, Y., Suzuki, A., Yamanaka, T., Sasaki, K., Mizuno, K., Sawada, H., Yonemura, S. and Ohno, S. 2009. Interaction between PAR-3 and the aPKC-PAR-6 complex is indispensable for apical domain development of epithelial cells. J. Cell Sci. 122, 1595-1606.   DOI
90 Ihara, K. I., Asanuma, K., Fukuda, T., Ohwada, S., Yoshida, M. and Nishimori, K. 2014. MAGI-2 is critical for the formation and maintenance of the glomerular filtration barrier in mouse kidney. Am. J. Pathol. 184, 2699-2708.   DOI
91 Gao, L., Joberty, G. and Macara, I. G. 2002. Assembly of epithelial tight junctions is negatively regulated by Par6. Curr. Biol. 12, 221-225.   DOI
92 Gardner, K. L., Sanford, J. L., Mays, T. A. and Rafael-Fortney, J. A. 2006. CASK localizes to nuclei in developing skeletal muscle and motor neuron culture models and is agrin-independent. J. Cell Physiol. 206, 196-202.   DOI
93 Guilbot, A., Williams, A., Ravisé, N., Verny, C., Brice, A., Sherman, D. L., Brophy, P. J., LeGuern, E., Delague, V., Bareil, C., Mégarbané, A. and Claustres, M. 2001. A mutation in periaxin is responsible for CMT4F, an autosomal recessive form of Charcot-Marie-Tooth disease. Hum. Mol. Genet. 10, 415-421.   DOI
94 Ebnet, K., Schulz, C. U., Meyer Zu Brickwedde, M. K., Pendl, G. G. and Vestweber, D. 2000. Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. J. Biol. Chem. 275, 27979-27988.
95 Garrido, U. S., Bradfield, P. F. and Imhof, B. A. 2014. Tight junction dynamics: the role of junctional adhesion molecules(JAMs). Cell Tissue Res. 355, 701-715.   DOI
96 Gonzalez-Mariscal, L., Betanzos, A. and Avila-Flores, A. 2000. MAGUK proteins: structure and role in the tight junction. Semin Cell Dev. Biol. 11, 315-324.   DOI
97 Gonzalez-Mariscal, L., Ponce, A., Alarcon, L. and Jaramillo, B. E. 2006. The tight junction protein ZO-2 has several functional nuclear export signals. Exp. Cell. Res. 312, 3323-3335.   DOI
98 Ernst, A., Appleton, B. A., Ivarsson, Y., Zhang, Y., Gfeller, D., Wiesmann, C. and Sidhu, S. S. 2014. A structural portrait of the PDZ domain family. J. Mol Biol. 426, 3509-3519.   DOI
99 Facciuto, F., Cavatorta, A., Valdano, M., Marziali, F. and Gardiol, D. 2012. Differential expression of PDZ domain-containing proteins in human diseases - challenging topics and novel issues. FEBS J. 279, 3538-3548.   DOI
100 Fanning, A. S. and Anderson, J. M. 1996. Protein-protein interactions: PDZ domain networks. Curr. Biol. 6, 1385-1388.   DOI
101 Farquhar, M. G. and Palade, G. E. 1963. Junctional complexes in various epithelia. J. Cell Biol. 17, 375-412.   DOI
102 Fanning, A. S., Jameson, B. J., Jesaitis, L. A. and Anderson, J. M. 1998. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J. Biol. Chem. 273, 29745-29753.   DOI
103 Hirao, K., Hata, Y., Ide, N., Takeuchi, M., Irie, M., Yao, I., Deguchi, M., Toyoda, A., Sudhof, T. C. and Takai, Y. 1998. A novel multiple PDZ domain-containing molecule interacting with N-methyl-D-aspartate receptors and neuronal cell adhesion proteins. J. Biol. Chem. 273, 21105-21110.   DOI
104 Milner, L. C., Shirley, R. L., Kozell, L. B., Walter, N. A., Kruse, L. C., Komiyama, N. H., Grant, S. G. and Buck, K. J. 2015. Novel MPDZ/MUPP1 transgenic and knockdown models confirm Mpdz’s role in ethanol withdrawal and support its role in voluntary ethanol consumption. Addict. Biol. 20(1), 143-147.   DOI
105 Krapivinsky, G., Medina, I., Krapivinsky, L., Gapon, S. and Clapham, D. E. 2004. SynGAP-MUPP1-CaMKII synaptic complexes regulate p38 MAP kinase activity and NMDA receptor-dependent synaptic AMPA receptor potentiation. Neuron 43, 563-574.   DOI