• Title/Summary/Keyword: PDP cell

Search Result 179, Processing Time 0.04 seconds

Discharge Characteristics of a Plasma Display using Vertical Auxiliary Electrodes

  • Moon, Cheol-Hee
    • Journal of Information Display
    • /
    • v.9 no.1
    • /
    • pp.20-25
    • /
    • 2008
  • In a conventional plasma display, the bus electrode was located on the ITO electrode at the outer part of each cell. We propose a new electrode configuration using vertical auxiliary electrodes which play a role of electrically connecting ITO and bus electrodes with the aim of enhancing discharge and luminous characteristics of the PDP (Plasma Display Panel). In this paper, luminance and luminous efficiency of the 3 in.-diagonal test panel are measured with various number of vertical auxiliary electrodes such as 2, 50 and 150. The change in the luminous characteristics is explained in connection with the discharge characteristics of the PDP cells such as current peak, IR emission peak and ICCD picture image.

The study on the electrical and optical characteristics of a new structure for color ac plasma displays (새로운 전극구조를 가진 ac-PDP의 전기 광학적 특성에 관한 연구 (II))

  • Ko, Ji-Sung;Lee, Woo-Geun;Lee, Jae-Young;Park, Jae-Moon;Cho, Jung-Soo;Park, Chung-Hoo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2230-2232
    • /
    • 1999
  • A new type ac plasma display panel(PDP) cells are designed and tested electrically and optically. One cell has the structure of sin discharge path shape and small electrode area. The other cells have the non-symmetric structure with a same electrode area. They show a higher luminous efficienccy and a lower power consumption about 25% improvement than the conventional standard ac PDP cells.

  • PDF

Characteristic of Facing Discharge Front plate Address Electrode Structure in AC PDP

  • Cho, Hyun-Min;Kim, Dong-Hwan;Song, In-Cheol;Kim, Yun-Gi;Ok, Jung-Woo;Kim, Dong-Hyun;Lee, Hae-June;Lee, Ho-Jun;Park, Chung-Hoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.104-107
    • /
    • 2009
  • In order to improve discharge characteristics in AC PDP, we suggest FDFA (Facing Discharge Front plate Address Electrode) structure. By adopting both long facing discharge electrodes and address electrodes in front plate, the FDFA structure make it possible to gain a high luminance, low power consumption, and a high luminous efficiency.

  • PDF

Characteristics of Image Sticking Observed During Background Display in AC-PDP (AC PDP의 배경광 잔상특성)

  • 류재화;임성현;김동현;김중균;이호준;박정후
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.2
    • /
    • pp.91-96
    • /
    • 2004
  • In darkroom condition, it was observed that a white picture pattern lasted several minutes leaves a recognizable trace in subsequent black background picture. Although this is not a serious problem for the most current public display or home TV applications, the image sticking should be minimized for future high quality multimedia display applications. In order to characterize this picture memory effect having relatively long time scale, spatially resolved luminance measurement and light waveform measurement have been performed. Pixels located at the outer boundary of white pattern previously displayed shows highest luminance. These cells also shows fastest ignition at the ramp up reset sequence. The luminance and ignition voltage differences between boundary cells and the other cells are increased with display duration and number of sustain-pulse. It is speculated that image sticking observed at the boundary cell is originated from the transport of charged particles and re-deposition of reactive species such as Mg, O provided from strong sustain discharge region.

A Study of the Discharge Characteristics of AC-PDP Having Auxiliary Electrodes (보조전극을 가진 AC-PDP cell구조의 방전특성 연구)

  • Kang, Kyung-Il;Jang, Jin-Ho;Choi, Jun-Young;Kim, Dong-Hyun;Lee, Ho-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.173-174
    • /
    • 2007
  • 본 논문에서는 scan 전극과 common 전극 사이에 보조 전극을 가진 PDP에서 asymmetry, long gap mode 와 같은 새로운 구동방법을 제안한다. asymmetry mode에서 주전극의 가운데 부분에 위치한 보조전극은 리셋, 어드레스, 서스테인의 모든 구간동안 scan 또는 common 전극에 연결되어 있다. long gap mode에서는 전기적으로 끊어져있거나 초기 몇 개의 서스테인 펄스를 제외하고 서스테인 구간동안 Vs/2의 전압으로 유지된다. 제안된 조와 구동 방법에서 전력에너지소비를 최소화함으로써 더 높은 발광효율을 얻을 수 있다. 새로운 구동방법의 효용은 다양한 Xe분압상태에서도 연구되었다.

  • PDF

PDP cell discharge characteristics using 3-D fluid code (3차원 유체코드를 이용한 PDP 셀 방전 특성 분석)

  • Song, In-Cheol;Lim, Wang-Sun;Hwang, Suk-Won;Choi, Jun-Young;Yoon, Hyun-Jin;Lee, Hae-June;Lee, Ho-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1401-1403
    • /
    • 2007
  • 플라즈마 디스플레이 패널(PDP)에서의 가장 큰 문제점 중의 하나는 낮은 발광 효율이다. 그리고 또 다른 문제점은 높은 가격에 있다. 최근 디스플레이 시장에서의 가격 경쟁이 격화 되면서 상판 유리로 ITO glass 를 사용하지 않고 버스 전극만 사용한 구조들의 연구가 진행되고 있다. ITO-less 전극 구조의 경우 ITO구조에 비하여 휘도가 낮다는 단점이 있지만 공정의 간소화로 인해 패널 가격을 낮추는데 큰 이점이 있다. 본 논문에서는 몇 가지 ITO-less 전극구조의 방전특성을 비교해보고 가능성을 제시하고자 한다.

  • PDF

A Study on the Narrow Erase Method of Surface Discharge AC PDP (면방전 AC PDP에서 세폭소거 방식에 관한 연구)

  • 안양기;윤동한
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.6
    • /
    • pp.39-47
    • /
    • 2003
  • This paper proposes the new narrow erase method to erase wall charges formed in an AC plasma display panel (PDP) cell. In the Proposed method, sustain switching timing is adjusted for inducing a weak discharge. Then, after the narrow erase, tile voltage of the X electrode is set to differ from that of the Y electrode. For the proposed method, the measured maximum address voltage margin was 38.3V at Y_Reset voltage of 100V and sustain voltage of 180∼185V. However, for the prior method, in which the X and Y electrodes we set to be of equal voltage after the narrow erase, the measured maximum address voltage margin was 31.3V at Y_Reset voltage of 150V and sustain voltage of 180V. This result shows that the measured maximum voltage margin for the proposed method is greater than that for the prior method by ∼7V(22%).

3-Dimensional Emission characteristics of an AC PDP Cell

  • Jung, Jae-Chul;Jeong, Dong-Cheol;Bae, Hyun-Sook;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.529-532
    • /
    • 2004
  • The spatio-temporal variation of Infra Red(IR) emission images were obtained from a real 3-dimensional discharge space of a surface discharge type, alternating current plasma display panel(AC PDP) cell with the Ne-Xe(4%) 400Torr gas mixture. IR emissions were observed in each period of the ADS(Address and Display Separation) driving scheme with ramp initializing waveform using an images intensified charge coupled device(ICCD) camera. The roles of each electrode were identified and it was compared with the results of the discharge simulation and of the wall charge distributions measured by the electro-optic technique.

  • PDF

Optimization of Geometries and Optical properties in PDP Cells

  • Jung, Sung-Wook;Choi, Hye-Rim;Oh, Myung-Hwan;Kang, Jung-Won
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.894-897
    • /
    • 2006
  • The detailed studies regarding to the front and rear panel geometries and optical properties of composed layers were needed to improve the luminance and efficiency. 3-dimensional optical code can be used to analyze the variation of geometries and the changing of optical properties. The visible light distributions and illuminance results were simulated depending on the bus electrode position, ITO geometries and optical properties of dielectric layer. As the ITO area was decreased and the bus electrode was located at the outer part of cell, the illumination was increased. And we could find quantification which is related between dielectric layer and visible light distribution of PDP cell.

  • PDF

The Fabrication and Properties of Ito Transparent Conducting Film for PDP by the Discharge Plasma Analysis (방전플라즈마 해석을 통한 PDP용 ITO 투명전도막의 제작 및 특성)

  • 곽동주;조문수;박강일;임동건
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.10
    • /
    • pp.902-907
    • /
    • 2003
  • In this paper, the ITO thin film, which is considered as one of the most currently used material for the high performance transparent conducting films for the PDP cell, was made in a parallel-plate, capacitively coupled DC magnetron sputtering system. Some electrical and optical properties of ITO films were investigated and discussed on the basis of glow discharge characteristics. The optimized thin film fabricating conditions of Ar gas pressure and substrate temperature were derived from the Paschen curve and glow discharge characteristics. The maximum transmittance of 89.61 % in the visible region and optical band gap of 3.89 eV and resistivity of 1.67${\times}$10$\^$-3/ $\Omega$-cm were obtained under the conditions of 300 C of substrate temperature and 10∼15 mtorr of pressure, which corresponds nearly to that of Paschen minimum.