3차원 유체코드를 이용한 PDP 셀 방전 특성 분석

송인철, 임왕선, 황석원, 최준영, 윤현진, 이해준, 이호준 부산대학교 전기공학과

PDP cell discharge characteristics using 3-D fluid code

In Cheol Song, Wang Sun Lim, suk won Hwang, Jun Young Choi ,Hyun Jin Yoon, Hae June Lee , Ho-Jun Lee Department of Electrical engineering,Pusan National University

Abstract - 플라즈마 디스플레이 패널(PDP)에서의 가장 큰 문제점 중 의 하나는 낮은 발광 효율이다. 그리고 또 다른 문제점은 높은 가격에 있다. 최근 디스플레이 시장에서의 가격 경쟁이 격화 되면서 상관 유리 로 ITO glass 를 사용하지 않고 버스 전극만 사용한 구조들의 연구가 진행되고 있다. ITO-less 전극 구조의 경우 ITO구조에 비하여 휘도가 낮다는 단점이 있지만 공정의 간소화로 인해 패널 가격을 낮추는데 큰 이점이 있다. 본 논문에서는 몇 가지 ITO-less 전극구조의 방전특성을 비교해보고 가능성을 제시하고자 한다.

1. 서 론

Plasma Display Panel (PDP)은 최근에 High Definition Television (HDTV)으로 주목받고 있다. 그러나 디스플레이 로서 요구되는 고효율, 고휘도 그리고 저가격화 등의 문 제들이 남아 있다. 최근 디스플레이의 계속되는 가격하락 으로 PDP에서도 저가격화의 요구가 절실한 상황이다. 이 로 인해 ITO-less 구조에 대한 기대가 커지고 있다. 하지 만 ITO-less 구조는 ITO구조에 비해 낮은 휘도와 효율을 가지는 문제점이 있다. 본 논문에서는 몇 가지 ITO-less 구조의 방전특성을 3차원 유체 코드를 이용하여 알아보고 휘도와 효율을 극대화 할 수 있는 최적 조건을 찾아보았 다.

2. 본 론

2.1 시뮬레이션에 사용된 가정과 식

그림.1 에 제시한 구조들을 3차원 유체 모델로 시뮬레이션 하였다.[1] 다음에 제시한 식은 플라즈마의 운동을 유체 모델로 나 타낸 식이다. 식(1)은 continuity equation이다. 플라즈마 입자(전 자, 이온 그리고 여기종)의 밀도(**n**_i) 와 flux(*I*) 의 발산을 더하 면 생성되거나 소멸되는 양이 된다. 식(2)는 momentum transport equation으로서, flux를 계산하여 식(1)을 이용하여 밀 도(**n**_i)를 계산하게 된다. PDP의 경우 높은 압력을 사용하므로 입 자의 충돌이 빈번하게 일어나고, 국부적으로 전자가 얻은 에너지 는 모두 그 영역 내에서 사용된다고 가정할 수 있으므로 LFA(local field approximation)가 사용되어진다. 이 가정을 이용 하여 전기장을 압력으로 나눈 값(E/P)에 따라 mobility(μ) 와 diffusion coefficient(D)는 BOLSIG code로 계산되었다.[2] 여기서 다시 식(2)의 전기장 (E)를 식(3)의 poisson's equation을 이용하여 풀게 된다. 정리하자면 세 개의 식은 서로 연관되어 있으며 세 식을 이용하여 플라 즈마 입자의 거동을 나타낼 수 있게 된다.

$$\frac{\partial n_i}{\partial t} + \nabla \cdot \Gamma_i = S_s \tag{1}$$

$$\Gamma_i = \pm \mu_i n_i E - D_i \nabla n_i \tag{2}$$

$$\nabla \cdot E = -\nabla^2 V = \frac{\rho}{\varepsilon_0} \tag{3}$$

2.2. 시뮬레이션에 사용된 모델

(u) II

그림.1 시뮬레이션 구조 (상판 전극 패턴)

그림.1에서 4가지 ITO-less 전극 구조를 제시한고 방전 특성을 분석하였다. 그림.1(a)는 T 구조로서 제시한 구조 중에 가장 간단한 구조이다. 따라서 T 구조를 기준으로 선택하였다. 그림.1(b)구조는 T-hump 구조로서 T 구조에서 두 개의 돌기를 추가하였다. 그리고 리림.1(c)는 pi 구조로서 T 구조에서 cross bar 한 개를 추가시켰다. 마지막으로 그림.1(d)는 K 구조로서 cross bar 중앙에 패턴을 추가시켰 구조이다. 상관 패턴의 구조를 조금씩 변화시켜 구조적 변화에 따른 방전 특성의 변화를 시뮬레이션을 통해 알아보았다. 아래의 표.1 은 시뮬레이션에서 디자인된 PDP cell 의 상세 조건을 나타낸다.

표. 1 시뮬레이션 조건

Simulation volumes	680 X 190 X 220 μm ³
Gap distance	Average 80 µm
Dielectric thickness	30 µm (Top), 20 µm (Bottom)
Barrier rib thickness	80 µm
Gas mixture	Xe 8% & Ne 92% at 500 Torr
Voltage Frequency	100 kHz

그림.1 하나의 PDP cell에서 각 전극에 인가된 전압

그림.1 에 서와 같이 각 전극에 테스트 전압(0V,1V,0.5V)을 Y,Z 그리고 ,X 전극에 인가하여 각 전극에서의 수직방향 전기장을 계산하여 Y,Z 전극에서의 capacitance를 구하였다.

표. 2 각 구조의 면적과 capacitance

	Area(cm ²)	C(pF)
Т	2.36E-04	0.00798
T-h	2.42E-04	0.00704
Pi	2.86E-04	0.00816
K	2.44E-04	0.00825

전극 면적과 capacitance를 구한 결과 Pi 구조가 가장 넓은 전극 면적을 가졌다. 전극은 불투명하기 때문에 전극면적의 크기와 반대의 순서로 개구율이 넓게 된다. 그리고 capacitance는 K 구조가 가장 크고 T-hump 구조가 가장 작게 나타났다. T 구조와 T-hump 구조를 비교해 볼때 gap 간격은 T-hump 구조가 더 넓다. 따라서 capacitance는 전극의 패턴에 의한 영향보다는 gap 간격의 영향이 더 크다는 것을 알 수 있다.

그림.3 제안된 ITO-less 구조의 Xe³P1 density profiles

(c) K

그림.3 은 z = 160 µm, x = 220, 340, 460 µm, y = 110 µm에서

(d) T

자른 단면에서의 Xe ³P₁ density profile 을 나타내었으며 모두 log scale로 그려졌다. x 방향과 y 방향에서 자른 단면은 상판 구조에 관계없이 비슷하게 보인다. 하지만 z 방향에서 자른 단면은 상판의 전극 구조의 패턴과 비슷한 분포를 보이며. Pi 구조가 가장 넓게 분포함을 알 수 있다. 따라서 넓게 퍼진 Xe ³P₁ 의 분포를 가진 pi 구조가 가장 높은 휘도를 보였다.

2.5 Xe³P1 입자의 최대량 과 Xe⁺ 의 power 소모

(a) Xe ³P₁ 의 최대 입자수

(b) Xe⁺의 power 소모

그림.4 Xe³P1 입자의 최대량 과 Xe⁺ 의 power 소모

Xe ³P₁은 147nm의 진공자외선(VUV)를 방출하고 PDP cell 내부의 형광체를 여기시킨다. 그러므로 147nm의 진공자외선(VUV)은 휘도와 가장 밀접한 요소이다. 그리고 Xe 이온의 파워 소모는 총 파워 소모와 밀접한 연관이 있다. 그립.4에서의 pi 구조의 Xe P₁입자수가 가장 많고 파워 소모 역시 가장 많다는 것을 나타내고 있다. 따라서 다른 구조들에 비해 pi 구조의 휘도가 가장 높게 나타났고 효율은 Xe²P₁ 입자수가 높지만 power 소모 또한 크기 때문에 다른 구조와 비슷하게 나타났다.

2.6 유지전압에 따른 Discharge efficiency

그림.5 유지전압에 따른 Discharge efficiency

그림5 에서는 유지전압에 따른 방전 효율을 나타내고 있다. 방전 유지전압이 260V 일때에는 Pi 구조와 T-hump 구조가 T 구조에 비해 높은 효율을 보였다. 그리고 Pi 구조가 제안된 구조중에서 가장 높은 효율을 나타내었다.

3. 결 론

PDP 패널의 가격을 낮추기 위해서 몇 가지 ITO-less cell 구조를 제안 하였다. 제안된 구조들을 3차원 유체 코드를 이용하여 Xe 여기종 분포 와, 밀도 분포, 파워소모, 방전 효율 등을 계산 하였다. 그림.1 에 제안된 4개의 구조 중에서 두 개의 cross bar를 가진 Pi 구조가 가장 좋은 특성 을 보였다. T 구조에 비하여 Pi 구조가 25%가량 많은 량의 **Xe³Pı 수 를** 나타내었고, 파워 소모는 15%정도 높게 나타났다. 그 결과 높은 휘 도와 방전 효율을 나타내었다. 하지만 전극면적의 증가로 인한 개구율 의 감소가 단점이라 할 수 있다. 앞으로의 연구는 방전 갭에 따른 효과 와 돌기의 효과 그리고 전극의 모양의 최적화에 대한 연구가 진행되어 야 하고 cell size에 따른 특성들도 조사해볼 예정이다.

[참 고 문 헌]

[1] C. H. Park et al. "Surface-discharge characteristics of MgO-thin films prepared by reactive RF unbalance magnetron sputtering", Thin Solid Film, vol 366, pp83-94 2000

[2] S. H. Lee et al, "A Study on New Shaped Sustaining Electrode Showing High Luminance and Luminous Efficiency" Journal of Information Display, vol. 2, no. 1, pp20-23, 2

[3] S. H. Lee et al, "The Effect if Dielectric Thickness and Barrier Rib Height on Addressing time of Coplanar ac PDP". Journal of KIEE, vol. 11, no. 1, pp41-45, 2001

[4] G. J. M. Hagelaara "Energy loss mechanisms in the microdischarges in plasma display panels", JOURNAL OF Applied Physics, p2033, 15 February 2001

[5] H. J. Lee*, H. J. Yoon, W. Y. Choi, C. H. Park "Two-dimensional simulation of flat fluorescent lamps for an LCD backlight unit"13th Asian Conference on Electrical Discharge October 16–19, 2006, Hokkaido University, Sapporo, Japan