• 제목/요약/키워드: PD type fuzzy controller

검색결과 37건 처리시간 0.03초

PD+I-type fuzzy controller using Simplified Indirect Inference Method

  • Kim, Ji-Hoon;Jeon, Hae-Jin;Chun, Kyung-Han;Park, Bong-Yeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.179.5-179
    • /
    • 2001
  • Generally, while PD-type fuzzy controller has good performance in transient period, it has uniform steady state error of response. To improve limitations of PD-type fuzzy controller, we propose a new fuzzy controller to improve the performance of transient response and to eliminate the steady state error of response. In this paper, PD-type fuzzy controller is used a simplified indirect inference method(SIIM). When the SIIM is applied, the proposed method has the capability of the high speed inference and adapting with increasing the number of the fuzzy input variables easily. The outputs of this controller are the output calculated by PD-type fuzzy controller and the accumulated error scaling factor. Here, the accumulated error scaling factor is adjusted by fuzzy rule according to the system state variables. To show the usefulness of the proposed controller, it is applied to 0-type 2nd-order linear system.

  • PDF

Simple PD+l-type fuzzy controller design

  • Kim, Jae-Hyoung;Kim, Ji-Hoon;Park, Bong-Yeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.61.4-61
    • /
    • 2002
  • Introduction $\textbullet$ Simple PD-type Fuzzy Controller $\textbullet$ Simple PD+l-type fuzzy controller design $\textbullet$ Simulation $\textbullet$ Conclusion $\textbullet$ References

  • PDF

오차적분 적용계수를 이용한 PD+I 퍼지제어기 (PD+I Fuzzy Controller Using Error-Accumulating Applying Factor)

  • 전경한;이연정;최봉열
    • 제어로봇시스템학회논문지
    • /
    • 제8권3호
    • /
    • pp.193-198
    • /
    • 2002
  • In this paper, we Propose a PD+I fuzzy controller using an error-accumulating applying factor. In fuzzy control, analytical study was done formerly, in which fuzzy control can be classified by PD type and PI type, and also the study for getting merits of both types was done, too. But the mixed type has a complex structure and many parameters. The proposed fuzzy controller is 2-input 2-out-put and PD type fuzzy control is used as a basic structure. And the proposed controller annihilates a steady-state error and improves transient responses because of using the error-accumulating applying factor which is determined in the real time along the current state of controlled process. Futhermore it is easy to tune the system because of decreasing the number of scaling factors and the I type controller with resetting resolves the integral wind-up problem. Finally we apply the proposed scheme to various plants and show the performance betterment.

모델참조 퍼지 알고리즘을 이용한 병렬형 퍼지제어기 설계 (Design of Parallel Type Fuzzy Controller Using Model Reference Fuzzy Algorithm)

  • 추연규;김병철;이광석;김현덕
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2002년도 추계종합학술대회
    • /
    • pp.888-892
    • /
    • 2002
  • 본 논문에서는 Hybrid형 퍼지-PID 제어기와 모델참조 퍼지제어기를 이용하여 병렬형 퍼지 제어기를 설계 하였다. 먼저 첫 번째 제어기는 퍼지 PI와 퍼지 PD가 결합한 Hybrid형 퍼지-PID 제어기로서 원하는 응답특성에 대해 안정하게 도달하는 목적과 플랜트에 대해 외란이 발생한 경우 외란을 극복할 수 있는 역할을 하게 된다. 그리고 두 번째 제어기인 모델참조 퍼지제어기는 원하는 응답에 대해 빠른 응답을 나타낼 수 있도록 설계하였다. 본 논문에서 설계된 병령형 퍼지제어기를 이용하여 DC 모터에 적용하여 응답특성을 살펴본 결과 빠르고 안정된 응답특성과 또한 외란이 발생한 경우 빠른 시간에서 외란을 극복함을 확인하였다.

  • PDF

뉴로-퍼지 제어기 설계 연구 (A Study on a Neuro-Fuzzy Controller Design)

  • 임정홈;정태진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2120-2122
    • /
    • 2002
  • There are several types of control systems that use fuzzy logic controller as a essential system component. The majority of research work on fuzzy PID controller focuses on the conventional two-input PI or PD type controller. However, fuzzy PID controller design is a complex task due to the involvement of a large number of parameters in defining the fuzzy rule base. In this paper we combined conventional PI type and PD type fuzzy controller and set the initial parameters of this controller from the conventional PID controller gains obtained by Ziegler-Nichols tuning or other coarse tuning methods. After that, by replacing some of these parameters with sing1e neurons and making them to be adjusted by back-propagation learning algorithm we designed a neuro-fuzzy controller which showed good performance characteristics in both computer simulation and actual application.

  • PDF

크리스프 타입 퍼지 제어기의 동특성 해석 (Analysis on Dynamical Behavior of the Crisp Type Fuzzy controller)

  • 권오신;최종수
    • 한국지능시스템학회논문지
    • /
    • 제5권4호
    • /
    • pp.67-76
    • /
    • 1995
  • 퍼지 제어기에 관한 최근 연구에서, 연산의 간략성을 위해 퍼지 제어 규칙의 후건부에 대하여 퍼지 집합 대신에 크리스프 값을 사용하는 크리스프 타입 퍼지 제어기 모델이 다양한 분양의 응용에 널리 이용괴고 있다. 이 논문에서는 max-min 추론법 및 product-sum 추론법에 기초한 크리스프 타입 퍼지 제어기의 동특성을 해석하였다. 해석결과, 크리스프 타입 퍼지 제어기는 근사적으로 PD 제어기와 같이 동작함을 보였다.

  • PDF

압전소자로 구동되는 유연성 로봇 핑거의 제어 (The Control of a flexible Robotic Finger Driven by PZT)

  • 류재춘;박종국
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.568-576
    • /
    • 1998
  • In this thesis discuss with a flexible robotic finger design and controller which is used for the micro flexible robotic finger. So, miniaturization, precision, controller for the control of grasping force and actuator were needed. And, even if we develop a new actuator and controller, in order to use on real system, we must considerate of a many side problem. In a force control of micro flexible finger for grasping an object, the fingertip's vibration was more important task of accuracy control. And, controller were adopt the PD/PI mixed type fuzzy controller. The controller were consist of two part, one is a PD type fuzzy controller for increase the rising time response, the other is a PI type fuzzy controller for decrease of steady-state error. Especially, in a PD type fuzzy controller, we used only seven rules. And, for a PI controller, we adopt a reset factor for the control of input values. so, we have overcome the exceed of controller's input range. For the estimate of ontroller's utility and usefulness, we have experiment and computer simulation of three cases. First, we consider of unit force grasping control for a task object, which is 0.03N. Second, bounding grasping force control which is add to a sinusoidal force on the unit force. At this cases the task force is (0.03+0.01 sin wt N). And consider of following of rectangular forces.

  • PDF

자기동조에 의한 PD 형 퍼지제어시스템의 응답 개선 (The Response Improvement of PD Type FLC System by Self Tuning)

  • 최한수;이경웅
    • 제어로봇시스템학회논문지
    • /
    • 제18권12호
    • /
    • pp.1101-1105
    • /
    • 2012
  • This study proposes a method for improvement of PD type fuzzy controller. The method includes self tuner using gradient algorithm that is one of the optimization algorithms. The proposed controller improves simple Takagi-Sugeno type FLC (Fuzzy Logic Control) system. The simple Takagi-Sugeno type FLC system changes nonlinear characteristic to linear parameters of consequent membership function. The simple FLC system could control the system by calibrating parameter of consequent membership function that changes the system response. While the determination on parameter of the simple FLC system works well only partially, the proposed method is needed to determine parameters that work for overall response. The simple FLC system doesn't predict the response characteristics. While the simple FLC system works just like proportional part of PID, our system includes derivative part to predict the next response. The proposed controller is constructed with P part and D part FLC system that characteristic parameter on system response is changed by self tuner for effective response. Since the proposed controller doesn't include integral part, it can't eliminate steady state error. So we include a gain to eliminate the steady state error.

최적 퍼지 직렬형 제어기 설계: Type-2 퍼지 제어기 및 공정경쟁기반 유전자알고리즘을 중심으로 (The Design of Optimized Fuzzy Cascade Controller: Focused on Type-2 Fuzzy Controller and HFC-based Genetic Algorithms)

  • 김욱동;장한종;오성권
    • 전기학회논문지
    • /
    • 제59권5호
    • /
    • pp.972-980
    • /
    • 2010
  • In this study, we introduce the design methodology of an optimized type-2 fuzzy cascade controller with the aid of hierarchical fair competition-based genetic algorithm(HFCGA) for ball & beam system. The ball & beam system consists of servo motor, beam and ball, and remains mutually connected in line in itself. The ball & beam system determines the position of ball through the control of a servo motor. Consequently the displacement change of the position of the moving ball and its ensuing change of the angle of the beam results in the change of the position angle of a servo motor. The type-2 fuzzy cascade controller scheme consists of the outer controller and the inner controller as two cascaded fuzzy controllers. In type-2 fuzzy logic controller(FLC) as the expanded type of type-1 fuzzy logic controller(FLC), we can effectively improve the control characteristic by using the footprint of uncertainty(FOU) of membership function. The control parameters(scaling factors) of each fuzzy controller using HFCGA which is a kind of parallel genetic algorithms(PGAs). HFCGA helps alleviate the premature convergence being generated in conventional genetic algorithms(GAs). We estimated controller characteristic parameters of optimized type-2 fuzzy cascade controller applied ball & beam system such as maximum overshoot, delay time, rise time, settling time and steady-state error. For a detailed comparative analysis from the viewpoint of the performance results and the design methodology, the proposed method for the ball & beam system which is realized by the fuzzy cascade controller based on HFCGA, is presented in comparison with the conventional PD cascade controller based on serial genetic algorithms.

누적오차 조정계수를 이용한 위치형 퍼지제어기 (Position-type fuzzy controller using the accumulated error scaling factor)

  • 김동하;전해진;최봉열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.177-177
    • /
    • 2000
  • In this paper, we propose a two-input two-output fuzzy controller to improve the performance of transient response and to eliminate the steady state error. The outputs of this controller are the control input calculated by position-type fuzzy controller and the accumulated error scaling factor. Here, the accumulated error scaling factor is adjusted on-line by fuzzy rules according to the current trend of the controlled process. To show the usefulness of the proposed controller, it is applied to several systems that are difficult to get satisfactory response by conventional PD controllers or PI controllers.

  • PDF